99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

頂刊TPAMI最全綜述!深入自動(dòng)駕駛BEV感知的魔力!

3D視覺工坊 ? 來源:3D視覺工坊 ? 2024-01-14 09:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1. 寫在前面

今天筆者為大家推薦一篇BEV感知的最新綜述,分析了BEV感知的核心難點(diǎn),回顧了關(guān)于BEV感知的最新工作,并對(duì)不同的解決方案進(jìn)行了深入分析,還描述了來自工業(yè)界的幾種BEV方法的系統(tǒng)設(shè)計(jì)。

下面一起來閱讀一下這項(xiàng)工作~

2. 摘要

在鳥瞰圖( bird ' s-eye-view,BEV )中學(xué)習(xí)強(qiáng)大的表征用于感知任務(wù)是一種趨勢(shì),并引起了工業(yè)界和學(xué)術(shù)界的廣泛關(guān)注。大多數(shù)自動(dòng)駕駛算法的傳統(tǒng)方法在前方或視角視圖中執(zhí)行檢測(cè)、分割、跟蹤等。隨著傳感器配置越來越復(fù)雜,集成來自不同傳感器的多源信息并在統(tǒng)一視圖中表示特征變得至關(guān)重要。BEV感知繼承了幾個(gè)優(yōu)點(diǎn),因?yàn)樵贐EV中表示周圍的場(chǎng)景是直觀的和融合友好的;而在BEV中表示對(duì)象是后續(xù)模塊在規(guī)劃和/或控制中最需要的。BEV感知的核心問題在于:( a )如何通過視角到BEV的視角轉(zhuǎn)換來重建丟失的三維信息;( b )如何獲取BEV網(wǎng)格中的真實(shí)標(biāo)注;( c )如何制定管線以納入來自不同來源和視圖的特征;( d )隨著傳感器配置在不同場(chǎng)景中的變化,如何適應(yīng)和推廣算法。在這項(xiàng)調(diào)查中,我們回顧了關(guān)于BEV感知的最新工作,并對(duì)不同的解決方案進(jìn)行了深入分析。此外,還描述了來自工業(yè)界的幾種BEV方法的系統(tǒng)設(shè)計(jì)。此外,我們還介紹了一套完整的實(shí)用指南,以提高BEV感知任務(wù)的性能,包括相機(jī)、激光雷達(dá)和融合輸入。最后,指出了該領(lǐng)域未來的研究方向。我們希望本報(bào)告能給社區(qū)帶來一些啟示,并鼓勵(lì)更多關(guān)于BEV感知的研究工作。

3. 文章結(jié)構(gòu)

BEV感知的任務(wù)總結(jié),包括輸入數(shù)據(jù)總結(jié)、底層任務(wù)總結(jié),還有核心任務(wù)總結(jié)。

3437b824-b22e-11ee-8b88-92fbcf53809c.jpg

BEV感知數(shù)據(jù)集總結(jié)。

3444d4a0-b22e-11ee-8b88-92fbcf53809c.jpg

BEV感知的主要工作。在輸入模態(tài)下," L "為L(zhǎng)iDAR," SC "為單相機(jī)," MC "為多相機(jī)," T "為時(shí)間信息。在Task下,' ODet '用于3D目標(biāo)檢測(cè),' LDet '用于3D車道線檢測(cè),' MapSeg '用于地圖分割,' Plan '用于運(yùn)動(dòng)規(guī)劃,' MOT '用于多目標(biāo)跟蹤。

3462445e-b22e-11ee-8b88-92fbcf53809c.jpg

BEV感知算法在主流基準(zhǔn)上的性能比較。

3480e47c-b22e-11ee-8b88-92fbcf53809c.jpg

視覺BEV感知的通用框架。包括2D特征提取器、視圖轉(zhuǎn)換和3D解碼器3個(gè)部分。在視圖轉(zhuǎn)換中,有兩種方式對(duì)3D信息進(jìn)行編碼- -一種是從2D特征中預(yù)測(cè)深度信息;另一種是從3D空間采樣2D特征。

3491a55a-b22e-11ee-8b88-92fbcf53809c.jpg

LiDAR BEV感知的通用框架。將點(diǎn)云數(shù)據(jù)轉(zhuǎn)換為BEV表示主要有兩個(gè)分支。上層分支提取三維空間中的點(diǎn)云特征,提供更準(zhǔn)確的檢測(cè)結(jié)果。下層分支在2D空間中提取BEV特征,提供更高效的網(wǎng)絡(luò)。

34a2634a-b22e-11ee-8b88-92fbcf53809c.jpg

視覺BEV感知檢測(cè)任務(wù)。

34b6f382-b22e-11ee-8b88-92fbcf53809c.jpg

LiDAR BEV感知分割任務(wù)。

34c8a474-b22e-11ee-8b88-92fbcf53809c.jpg

4. 總結(jié)

這篇綜述對(duì)近年來的BEV感知進(jìn)行了全面的回顧,作者認(rèn)為未來的發(fā)展趨勢(shì)是:( a )如何設(shè)計(jì)一個(gè)更精確的深度估計(jì)器;( b )如何在一種新的融合機(jī)制中更好地對(duì)齊來自多個(gè)傳感器的特征表示;( c )如何設(shè)計(jì)一個(gè)無參數(shù)的網(wǎng)絡(luò),使得算法的性能不受姿態(tài)變化或傳感器位置的影響,從而在各種場(chǎng)景中獲得更好的泛化能力;以及( d )如何從基礎(chǔ)模型中整合成功的知識(shí),以促進(jìn)BEV的感知。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2567

    文章

    53026

    瀏覽量

    767785
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4711

    瀏覽量

    95437
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    790

    文章

    14326

    瀏覽量

    170742

原文標(biāo)題:頂刊TPAMI最全綜述!深入自動(dòng)駕駛BEV感知的魔力!

文章出處:【微信號(hào):3D視覺工坊,微信公眾號(hào):3D視覺工坊】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    低速自動(dòng)駕駛與乘用車自動(dòng)駕駛在技術(shù)要求上有何不同?

    [首發(fā)于智駕最前沿微信公眾號(hào)]自動(dòng)駕駛技術(shù)的發(fā)展正朝著多元化方向邁進(jìn),其中低速自動(dòng)駕駛小車(以下簡(jiǎn)稱“低速小車”)因其在物流配送、園區(qū)運(yùn)維、社區(qū)服務(wù)等場(chǎng)景中的獨(dú)特價(jià)值而受到廣泛關(guān)注,且現(xiàn)階段已經(jīng)深入
    的頭像 發(fā)表于 07-14 09:10 ?156次閱讀
    低速<b class='flag-5'>自動(dòng)駕駛</b>與乘用車<b class='flag-5'>自動(dòng)駕駛</b>在技術(shù)要求上有何不同?

    SONY FCB-CR8530,如何重塑自動(dòng)駕駛視覺感知格局?

    自動(dòng)駕駛技術(shù)快速發(fā)展的當(dāng)下,車輛對(duì)周圍環(huán)境的精準(zhǔn)感知是確保安全與高效運(yùn)行的關(guān)鍵。凱茉銳電子SONY FCB-CR8530攝像機(jī)憑借其卓越性能,正逐漸成為自動(dòng)駕駛領(lǐng)域視覺感知系統(tǒng)的核心
    的頭像 發(fā)表于 06-25 17:54 ?188次閱讀

    淺析4D-bev標(biāo)注技術(shù)在自動(dòng)駕駛領(lǐng)域的重要性

    感知領(lǐng)域的一項(xiàng)突破性創(chuàng)新,通過引入時(shí)間維度與全局視角,為自動(dòng)駕駛系統(tǒng)提供了高精度、多模態(tài)的時(shí)空真值數(shù)據(jù),重塑了自動(dòng)駕駛系統(tǒng)的開發(fā)范式。 4D-BEV標(biāo)注是什么? 4D-
    的頭像 發(fā)表于 06-12 16:10 ?389次閱讀

    康謀方案 | BEV感知技術(shù):多相機(jī)數(shù)據(jù)采集與高精度時(shí)間同步方案

    隨著自動(dòng)駕駛技術(shù)的快速發(fā)展,車輛準(zhǔn)確感知周圍環(huán)境的能力變得至關(guān)重要。BEV Camera數(shù)據(jù)采集方案有效解決了多相機(jī)同步采集和高精度時(shí)間同步的難題,還提供了靈活的相機(jī)參數(shù)配置和高效的數(shù)據(jù)傳輸,能夠滿足
    的頭像 發(fā)表于 02-06 13:45 ?3493次閱讀
    康謀方案 | <b class='flag-5'>BEV</b><b class='flag-5'>感知</b>技術(shù):多相機(jī)數(shù)據(jù)采集與高精度時(shí)間同步方案

    2024年自動(dòng)駕駛行業(yè)熱點(diǎn)技術(shù)盤點(diǎn)

    感知輕地圖以及純視覺等。這些技術(shù)的出現(xiàn),也代表著自動(dòng)駕駛正從概念走向現(xiàn)實(shí),今天就給大家來盤點(diǎn)2024年自動(dòng)駕駛行業(yè)出現(xiàn)的那些技術(shù)熱點(diǎn)! ? 城市NOA:邁向精細(xì)化駕駛的關(guān)鍵路徑 城市N
    的頭像 發(fā)表于 01-14 10:48 ?626次閱讀

    淺析基于自動(dòng)駕駛的4D-bev標(biāo)注技術(shù)

    4D-bev標(biāo)注技術(shù)是指在3D空間中以時(shí)間作為第四個(gè)維度進(jìn)行標(biāo)注的過程。4D-bev通常在地場(chǎng)景較為復(fù)雜的自動(dòng)駕駛場(chǎng)景中使用,其可以通過精準(zhǔn)地跟蹤和記錄動(dòng)態(tài)對(duì)象的運(yùn)動(dòng)軌跡、姿勢(shì)變化以及速度等信息,全面理解和分析動(dòng)態(tài)對(duì)象在連續(xù)的時(shí)
    的頭像 發(fā)表于 12-06 15:01 ?3570次閱讀
    淺析基于<b class='flag-5'>自動(dòng)駕駛</b>的4D-<b class='flag-5'>bev</b>標(biāo)注技術(shù)

    標(biāo)貝科技:自動(dòng)駕駛中的數(shù)據(jù)標(biāo)注類別分享

    自動(dòng)駕駛訓(xùn)練模型的成熟和穩(wěn)定離不開感知技術(shù)的成熟和穩(wěn)定,訓(xùn)練自動(dòng)駕駛感知模型需要使用大量準(zhǔn)確真實(shí)的數(shù)據(jù)。據(jù)英特爾計(jì)算,L3+級(jí)自動(dòng)駕駛每輛汽
    的頭像 發(fā)表于 11-22 15:07 ?2031次閱讀
    標(biāo)貝科技:<b class='flag-5'>自動(dòng)駕駛</b>中的數(shù)據(jù)標(biāo)注類別分享

    標(biāo)貝科技:自動(dòng)駕駛中的數(shù)據(jù)標(biāo)注類別分享

    自動(dòng)駕駛訓(xùn)練模型的成熟和穩(wěn)定離不開感知技術(shù)的成熟和穩(wěn)定,訓(xùn)練自動(dòng)駕駛感知模型需要使用大量準(zhǔn)確真實(shí)的數(shù)據(jù)。據(jù)英特爾計(jì)算,L3+級(jí)自動(dòng)駕駛每輛汽
    的頭像 發(fā)表于 11-22 14:58 ?3838次閱讀
    標(biāo)貝科技:<b class='flag-5'>自動(dòng)駕駛</b>中的數(shù)據(jù)標(biāo)注類別分享

    自動(dòng)駕駛中一直說的BEV+Transformer到底是個(gè)啥?

    感知、理解和預(yù)測(cè)方面表現(xiàn)得更為強(qiáng)大,徹底終結(jié)了2D直視圖+CNN時(shí)代。BEV+Transformer通過鳥瞰視角與Transformer模型的結(jié)合,顯著提升了自動(dòng)駕駛
    的頭像 發(fā)表于 11-07 11:19 ?1402次閱讀
    <b class='flag-5'>自動(dòng)駕駛</b>中一直說的<b class='flag-5'>BEV</b>+Transformer到底是個(gè)啥?

    聊聊自動(dòng)駕駛離不開的感知硬件

    自動(dòng)駕駛飛速發(fā)展,繞不開感知、決策和控制決策的經(jīng)典框架,而感知作為自動(dòng)駕駛汽車“感官”的重要組成部分,決定了自動(dòng)駕駛系統(tǒng)對(duì)環(huán)境的理解和反應(yīng)能
    的頭像 發(fā)表于 08-23 10:18 ?1168次閱讀

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些優(yōu)勢(shì)?

    FPGA(Field-Programmable Gate Array,現(xiàn)場(chǎng)可編程門陣列)在自動(dòng)駕駛領(lǐng)域具有顯著的優(yōu)勢(shì),這些優(yōu)勢(shì)使得FPGA成為自動(dòng)駕駛技術(shù)中不可或缺的一部分。以下是FPGA在自動(dòng)駕駛
    發(fā)表于 07-29 17:11

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些應(yīng)用?

    是FPGA在自動(dòng)駕駛領(lǐng)域的主要應(yīng)用: 一、感知算法加速 圖像處理:自動(dòng)駕駛中需要通過攝像頭獲取并識(shí)別道路信息和行駛環(huán)境,這涉及到大量的圖像處理任務(wù)。FPGA在處理圖像上的運(yùn)算速度快,可并行性強(qiáng),且功耗
    發(fā)表于 07-29 17:09

    自動(dòng)駕駛識(shí)別技術(shù)有哪些

    自動(dòng)駕駛的識(shí)別技術(shù)是自動(dòng)駕駛系統(tǒng)中的重要組成部分,它使車輛能夠感知并理解周圍環(huán)境,從而做出智能決策。自動(dòng)駕駛識(shí)別技術(shù)主要包括多種傳感器及其融合技術(shù),以及基于這些傳感器數(shù)據(jù)的處理和識(shí)別算
    的頭像 發(fā)表于 07-23 16:16 ?1509次閱讀

    自動(dòng)駕駛的傳感器技術(shù)介紹

    自動(dòng)駕駛的傳感器技術(shù)是自動(dòng)駕駛系統(tǒng)的核心組成部分,它使車輛能夠感知并理解周圍環(huán)境,從而做出智能決策。以下是對(duì)自動(dòng)駕駛傳感器技術(shù)的詳細(xì)介紹,內(nèi)容涵蓋常見類型、工作原理、在
    的頭像 發(fā)表于 07-23 16:08 ?3257次閱讀

    自動(dòng)駕駛汽車傳感器有哪些

    自動(dòng)駕駛汽車傳感器是實(shí)現(xiàn)自動(dòng)駕駛功能的關(guān)鍵組件,它們通過采集和處理車輛周圍環(huán)境的信息,為自動(dòng)駕駛系統(tǒng)提供必要的感知和決策依據(jù)。以下是對(duì)自動(dòng)駕駛
    的頭像 發(fā)表于 07-23 16:00 ?3284次閱讀