99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>如何提升AI算法速度 打造接近人腦規(guī)模的神經(jīng)網(wǎng)絡(luò)

如何提升AI算法速度 打造接近人腦規(guī)模的神經(jīng)網(wǎng)絡(luò)

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

FPGA芯片用于神經(jīng)網(wǎng)絡(luò)算法優(yōu)化的設(shè)計實現(xiàn)方案

前言 AI芯片(這里只談FPGA芯片用于神經(jīng)網(wǎng)絡(luò)加速)的優(yōu)化主要有三個方面:算法優(yōu)化,編譯器優(yōu)化以及硬件優(yōu)化。算法優(yōu)化減少的是神經(jīng)網(wǎng)絡(luò)的算力,它確定了神經(jīng)網(wǎng)絡(luò)部署實現(xiàn)效率的上限。編譯器優(yōu)化和硬件優(yōu)化
2020-09-29 11:36:094386

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

工智能。幾乎是一夜間,神經(jīng)網(wǎng)絡(luò)技術(shù)從無人相信變成了萬人追捧。神經(jīng)網(wǎng)絡(luò)之父Hiton1、人工神經(jīng)網(wǎng)絡(luò)是什么?人工神經(jīng)網(wǎng)絡(luò):是一種模仿動物神經(jīng)網(wǎng)絡(luò)行為特征,進行分布式并行信息處理的算法數(shù)學(xué)模型。這種網(wǎng)絡(luò)依靠系統(tǒng)
2018-06-05 10:11:50

神經(jīng)網(wǎng)絡(luò)算法怎么去控制溫控系統(tǒng),為什么不用PID控制?

神經(jīng)網(wǎng)絡(luò)算法怎么去控制溫控系統(tǒng),為什么不用pid控制
2023-10-27 06:10:14

神經(jīng)網(wǎng)絡(luò)Matlab程序

神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

網(wǎng)絡(luò)BP算法的程序設(shè)計  多層前向網(wǎng)絡(luò)BP算法源程序  第4章 Hopfield網(wǎng)絡(luò)模型  4.1 離散型Hopfield神經(jīng)網(wǎng)絡(luò)  4.2 連續(xù)型Hopfield神經(jīng)網(wǎng)絡(luò)  Hopfield網(wǎng)絡(luò)模型
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)的靈感和驅(qū)動

人腦中的神經(jīng)系統(tǒng)精密而復(fù)雜成人的大腦擁有超過1000億個神經(jīng)元[MOU1] 每天要進行數(shù)萬次的計算計算機系統(tǒng)發(fā)展到今天仍無法企及人腦的萬分之一
2019-07-29 08:36:26

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

問題,一個是神經(jīng)網(wǎng)絡(luò)的移植,另一個是STM32的計算速度。神經(jīng)網(wǎng)絡(luò)的移植網(wǎng)絡(luò)采用的是最簡單的BP神經(jīng)網(wǎng)絡(luò),基本原理可以自己去了解一下,大概就是通過若干次矩陣運算AX+BAX+BAX+B將m個輸入對應(yīng)到n
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡介

神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

CMSIS-NN神經(jīng)網(wǎng)絡(luò)內(nèi)核助力微控制器效率提升

自然會想到Arm Cortex-M系列處理器內(nèi)核,那么如果您想要強化它的性能并且減少內(nèi)存消耗,CMSIS-NN就是您最好的選擇?;贑MSIS-NN內(nèi)核的神經(jīng)網(wǎng)絡(luò)推理運算,對于運行時間/吞吐量將會有4.6X的提升,而對于能效將有4.9X的提升
2019-07-23 08:08:59

CMSIS-NN神經(jīng)網(wǎng)絡(luò)內(nèi)核可以讓微控制器效率提升5倍是真的嗎?

全新CMSIS-NN神經(jīng)網(wǎng)絡(luò)內(nèi)核讓微控制器效率提升5倍
2021-03-15 06:55:09

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08

labview BP神經(jīng)網(wǎng)絡(luò)的實現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21

AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀后感

AI加速器架構(gòu)設(shè)計與實現(xiàn)》+第一章卷積神經(jīng)網(wǎng)絡(luò)觀感 ? ?在本書的引言中也提到“一圖勝千言”,讀完第一章節(jié)后,對其進行了一些歸納(如圖1),第一章對常見的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)進行了介紹,舉例了一些結(jié)構(gòu)
2023-09-11 20:34:01

AI學(xué)習(xí)】第3篇--人工神經(jīng)網(wǎng)絡(luò)

`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2試用體驗】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

思考問題的過程。人腦輸入一個問題,進行思考,然后給出答案。神經(jīng)網(wǎng)絡(luò)就是在模擬人的思考這一過程。而我們要做的就是以數(shù)學(xué)的方式,將這一抽象的過程進行量化。神經(jīng)元與激活函數(shù)人的大腦有大約1000億個神經(jīng)
2019-03-03 22:10:19

【專輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個主題為一期,希望對各位有所幫助?。c擊標(biāo)題即可進入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

傳播的,不會回流),區(qū)別于循環(huán)神經(jīng)網(wǎng)絡(luò)RNN。BP算法(Back Propagation):誤差反向傳播算法,用于更新網(wǎng)絡(luò)中的權(quán)重。BP神經(jīng)網(wǎng)絡(luò)思想:表面上:1. 數(shù)據(jù)信息的前向傳播,從輸入層到隱含層
2019-07-21 04:00:00

一種基于高效采樣算法的時序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng)介紹

成為了非常重要的問題。 基于以上問題,本文提出了一種基于高效采樣算法的時序圖神經(jīng)網(wǎng)絡(luò)系統(tǒng) 。首先我們介紹用于時序圖神經(jīng)網(wǎng)絡(luò)采樣的高效采樣方法。采樣常常被用于深度學(xué)習(xí)中以降低模型的訓(xùn)練時間。然而現(xiàn)有的采樣
2022-09-28 10:34:13

不可錯過!人工神經(jīng)網(wǎng)絡(luò)算法、PID算法、Python人工智能學(xué)習(xí)等資料包分享(附源代碼)

為了方便大家查找技術(shù)資料,電子發(fā)燒友小編為大家整理一些精華資料,讓大家可以參考學(xué)習(xí),希望對廣大電子愛好者有所幫助。 1.人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實例(pdf彩版) 人工神經(jīng) 網(wǎng)絡(luò)
2023-09-13 16:41:18

人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實例(pdf彩版)

物體所作出的交互反應(yīng),是模擬人工智能的一條重要途徑。人工神經(jīng)網(wǎng)絡(luò)人腦相似性主要表現(xiàn)在:①神經(jīng)網(wǎng)絡(luò)獲取的知識是從外界環(huán)境學(xué)習(xí)得來的;②各神經(jīng)元的連接權(quán),即突觸權(quán)值,用于儲存獲取的知識。神經(jīng)元是神經(jīng)網(wǎng)絡(luò)
2018-10-23 16:16:02

人工神經(jīng)網(wǎng)絡(luò)原理及下載

人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

大多神經(jīng)網(wǎng)絡(luò)模型都是采用 BP網(wǎng)絡(luò)或者其變化 形式。早期神經(jīng)網(wǎng)絡(luò)缺少嚴格數(shù)學(xué)理論的支撐,并 且在此后的近十年時間,由于其容易過擬合以及訓(xùn) 練速度慢,并且在 1991 年反向傳播算法被指出在后 向傳播
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來越多地支持以前無法實現(xiàn)或非常難以實現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

反饋神經(jīng)網(wǎng)絡(luò)算法是什么

反饋神經(jīng)網(wǎng)絡(luò)算法
2020-04-28 08:36:58

圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理的簡要介紹

提升識別準確率,采用改進神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運動控制卡該如何去設(shè)計?

本文設(shè)計了一種基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運動控制卡。
2021-06-03 06:05:09

基于神經(jīng)網(wǎng)絡(luò)混沌吸引子公鑰加密算法的FPGA實現(xiàn)

【作者】:劉晉明;劉年生;【來源】:《廈門大學(xué)學(xué)報(自然科學(xué)版)》2010年02期【摘要】:利用具有順序和并行執(zhí)行的特點的VHDL語言,設(shè)計并實現(xiàn)了基于神經(jīng)網(wǎng)絡(luò)混沌吸引子的公鑰加密算法,在編
2010-04-24 09:15:41

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡(luò)的手勢識別系統(tǒng)

  摘 要:本文給出了采用ADXL335加速度傳感器來采集五個手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢特征量,同時利用BP神經(jīng)網(wǎng)絡(luò)算法進行誤差分析來實現(xiàn)手勢識別的設(shè)計方法
2018-11-13 16:04:45

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法解析

本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實現(xiàn)驗證方案,詳細討論了實現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計。
2021-05-06 07:01:59

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)設(shè)計

FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對在 FPGA 上實現(xiàn) CNN 做一個可行性研究
2019-06-19 07:24:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何利用SoPC實現(xiàn)神經(jīng)網(wǎng)絡(luò)速度控制器?

不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)模現(xiàn)場可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制器的硬件實現(xiàn)提供了新的載體。
2019-08-12 06:25:35

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何設(shè)計BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

,并能在腦海中重現(xiàn)這些圖像信息,這不僅與人腦的海量信息存儲能力有關(guān),還與人腦的信息處理能力,包括數(shù)據(jù)壓縮能力有關(guān)。在各種神經(jīng)網(wǎng)絡(luò)中,多層前饋神經(jīng)網(wǎng)絡(luò)具有很強的信息處理能力,由于其采用BP算法,因此也
2019-08-08 06:11:30

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

人工神經(jīng)網(wǎng)絡(luò)AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個挑戰(zhàn)是如何在嵌入式設(shè)備上實現(xiàn)它,同時優(yōu)化性能和功率效率。 使用云計算并不總是一個選項,尤其是當(dāng)
2021-11-09 08:06:27

應(yīng)用人工神經(jīng)網(wǎng)絡(luò)模擬污水生物處理

神經(jīng)網(wǎng)絡(luò)模型,并用實測污水廠進、出水?dāng)?shù)據(jù)進行模擬。采用最近鄰聚類學(xué)習(xí)算法確定徑向基函數(shù)的寬度、聚類中心和權(quán)值。其中神經(jīng)網(wǎng)絡(luò)的輸入為進水水質(zhì)和控制參數(shù)等5個影響因子,網(wǎng)絡(luò)輸出為COD或TN。結(jié)果表明
2009-08-08 09:56:00

有關(guān)脈沖神經(jīng)網(wǎng)絡(luò)的基本知識

譯者|VincentLee來源 |曉飛的算法工程筆記脈沖神經(jīng)網(wǎng)絡(luò)(Spiking neural network, SNN)將脈沖神經(jīng)元作為計算單...
2021-07-26 06:23:59

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

求基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實現(xiàn)過程

求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實現(xiàn)過程,最好有程序哈,謝謝?。?/div>
2012-12-10 14:55:50

求大神給一個人工神經(jīng)網(wǎng)絡(luò)與遺傳算法的matlab源代碼

求大神給一個人工神經(jīng)網(wǎng)絡(luò)與遺傳算法的源代碼。
2016-04-19 17:15:29

用FPGA去實現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計

1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計?這個問題其實我們不適合回答,但是FPGA廠商是的實際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在
2022-10-24 16:10:50

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用

針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測等機器
2021-12-14 07:35:25

遺傳算法 神經(jīng)網(wǎng)絡(luò) 解析

關(guān)于遺傳算法神經(jīng)網(wǎng)絡(luò)
2013-05-19 10:22:16

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計算作為獲取長時記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時記憶(long-range dependency)至關(guān)重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運算
2018-11-12 14:52:50

基于神經(jīng)網(wǎng)絡(luò)的開關(guān)電器設(shè)計與算法

根據(jù)神經(jīng)網(wǎng)絡(luò)的基本理論,研究了神經(jīng)網(wǎng)絡(luò)在電器設(shè)備中的應(yīng)用,提出了神經(jīng)網(wǎng)絡(luò)的分塊構(gòu)造方法和神經(jīng)網(wǎng)絡(luò)分塊學(xué)習(xí)算法,并通過實驗?zāi)M達到實際要求。關(guān)鍵詞 神經(jīng)網(wǎng)絡(luò) 算法 權(quán)
2009-06-13 11:40:0310

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計 概 述神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當(dāng)前的研究熱點之一。人腦在接受視覺
2010-03-29 10:05:12727

基于混沌蟻群的神經(jīng)網(wǎng)絡(luò)速度辨識器研究

近年來,由于神經(jīng)網(wǎng)絡(luò)的研究取得了長足的進展,基于BP神經(jīng)網(wǎng)絡(luò)模型的速度辨識方法得到了廣泛研究,但其仍存在收斂速度慢、易陷入局部極小值等問題,因此,對神經(jīng)網(wǎng)絡(luò)的優(yōu)化
2010-06-14 06:52:321108

電腦人腦神經(jīng)網(wǎng)絡(luò)

電腦人腦神經(jīng)網(wǎng)絡(luò)-1993-3-北京大學(xué)出版社。
2016-04-12 10:16:270

基于可拓神經(jīng)網(wǎng)絡(luò)的火災(zāi)探測算法_閆浩

基于可拓神經(jīng)網(wǎng)絡(luò)的火災(zāi)探測算法_閆浩
2017-03-19 19:28:030

BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法

BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法
2017-09-08 09:42:4810

基于RBF神經(jīng)網(wǎng)絡(luò)的通信用戶規(guī)模預(yù)測模型

算法預(yù)測性能更優(yōu),使用梯度下降算法與遺傳算法混合對RBF神經(jīng)網(wǎng)絡(luò)進行參數(shù)優(yōu)化,提高預(yù)測模型收斂效率。實例分析表明,使用本文研究的混合RBF神經(jīng)網(wǎng)絡(luò)預(yù)測模型的預(yù)測結(jié)果明顯優(yōu)于其他傳統(tǒng)的預(yù)測模型。同時,在預(yù)測速度上也具有較大的
2017-11-22 15:54:547

神經(jīng)網(wǎng)絡(luò)算法原理_神經(jīng)網(wǎng)絡(luò)算法的應(yīng)用_神經(jīng)網(wǎng)絡(luò)算法實例說明

神經(jīng)網(wǎng)絡(luò)是一種模擬人腦結(jié)構(gòu)的算法模型。其原理就在于將信息分布式存儲和并行協(xié)同處理。雖然每個單元的功能非常簡單,但大量單元構(gòu)成的網(wǎng)絡(luò)系統(tǒng)就能實現(xiàn)非常復(fù)雜的數(shù)據(jù)計算,并且還是一個高度復(fù)雜的非線性動力學(xué)習(xí)系統(tǒng)。
2017-12-05 15:06:4351397

深度神經(jīng)網(wǎng)絡(luò)會和人腦神經(jīng)網(wǎng)絡(luò)一樣產(chǎn)生人的智能么?

首先,人腦不僅僅是個對電信號進行處理的神經(jīng)網(wǎng)絡(luò)。比如說神經(jīng)遞質(zhì)在神經(jīng)元之間擔(dān)當(dāng)了“信使”的作用,而其中的活動是化學(xué)過程。甚至人腦中的生物過程和物理過程都可能對思維產(chǎn)生影響,比如腦供血不足和劇烈運動后的眩暈現(xiàn)象。
2018-06-29 17:07:005781

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹,人工神經(jīng)網(wǎng)絡(luò)(簡稱神經(jīng)網(wǎng)絡(luò),Neural Network)是模擬人腦思維方式的數(shù)學(xué)模型。 神經(jīng)網(wǎng)絡(luò)是在現(xiàn)代生物學(xué)研究人腦組織成果的基礎(chǔ)上提出的,用來模擬人類大腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和行為。神經(jīng)網(wǎng)絡(luò)反映了人腦功能的基本特征,如并行信息處理、學(xué)習(xí)、聯(lián)想、模式分類、記憶等。
2017-12-06 15:07:500

BP神經(jīng)網(wǎng)絡(luò)概述

BP 神經(jīng)網(wǎng)絡(luò)是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡(luò),BP算法是迄今最成功的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法。現(xiàn)實任務(wù)中使用神經(jīng)網(wǎng)絡(luò)時,大多是在使用 BP
2018-06-19 15:17:1542819

人工神經(jīng)網(wǎng)絡(luò)的定義

人工神經(jīng)網(wǎng)絡(luò)( Artificial Neural Networks, 簡寫為ANNs)也簡稱為神經(jīng)網(wǎng)絡(luò)或稱作連接模型,是對人腦或自然神經(jīng)網(wǎng)絡(luò)若干基本特性的抽象和模擬。
2018-11-24 09:21:1114868

人工神經(jīng)網(wǎng)絡(luò)的本質(zhì)探討

人工神經(jīng)網(wǎng)絡(luò)(ArTIficial Neural Network,ANN)簡稱神經(jīng)網(wǎng)絡(luò)(NN),是基于生物學(xué)中神經(jīng)網(wǎng)絡(luò)的基本原理,在理解和抽象了人腦結(jié)構(gòu)和外界刺激響應(yīng)機制后,以網(wǎng)絡(luò)拓撲知識為理論基礎(chǔ),模擬人腦神經(jīng)系統(tǒng)對復(fù)雜信息的處理機制的一種數(shù)學(xué)模型。
2019-01-01 10:06:002544

人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)資料總結(jié)

人工神經(jīng)網(wǎng)絡(luò)的概念: 在對人腦神經(jīng)網(wǎng)絡(luò)的基本認識的基礎(chǔ)上, 用數(shù)理方法從信息處理的角度對人腦神經(jīng)網(wǎng)絡(luò)進行抽象, 并建立某種簡化模型, 稱之為人工神經(jīng)網(wǎng)絡(luò), 是對人腦的簡化、抽象以及模擬,是一種旨在模仿人腦結(jié)構(gòu)及其功能的信息處理系統(tǒng)。
2021-02-05 14:05:0013

人工神經(jīng)網(wǎng)絡(luò)的原理及仿真實例

,是對人腦的抽象、簡化和模擬,反映人腦的基本特性。人工神經(jīng)網(wǎng)絡(luò)的研究是從人腦的生理結(jié)構(gòu)出發(fā)來研究人的智能行為,模擬人腦信息處理的功能。它是根植于神經(jīng)科學(xué)、數(shù)學(xué)、統(tǒng)計學(xué)、物理學(xué)、計算機科學(xué)及工程等學(xué)科的一種技術(shù)。
2022-04-11 11:28:350

基于神經(jīng)網(wǎng)絡(luò)算法的口罩檢測系統(tǒng)

神經(jīng)網(wǎng)絡(luò)算法檢測戴口罩的人并采取相應(yīng)的行動
2022-12-02 17:01:431

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)?

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識。就目前而言,神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實都是神經(jīng)網(wǎng)絡(luò)
2023-02-23 09:14:442256

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識別、語音識別等領(lǐng)域
2023-08-21 16:49:461229

卷積神經(jīng)網(wǎng)絡(luò)算法是機器算法

卷積神經(jīng)網(wǎng)絡(luò)算法是機器算法嗎? 卷積神經(jīng)網(wǎng)絡(luò)算法是機器算法的一種,它通常被用于圖像、語音、文本等數(shù)據(jù)的處理和分類。隨著深度學(xué)習(xí)的興起,卷積神經(jīng)網(wǎng)絡(luò)逐漸成為了圖像、語音等領(lǐng)域中最熱門的算法之一。 卷積
2023-08-21 16:49:48437

卷積神經(jīng)網(wǎng)絡(luò)算法比其他算法好嗎

、HOG、SURF等,卷積神經(jīng)網(wǎng)絡(luò)在識別準確率上表現(xiàn)更為突出。本文將介紹卷積神經(jīng)網(wǎng)絡(luò)并探討其與其他算法的優(yōu)劣之處。 一、卷積神經(jīng)網(wǎng)絡(luò) 卷積神經(jīng)網(wǎng)絡(luò)可以高效地處理大規(guī)模的輸入圖像,其核心思想是使用卷積層和池化層構(gòu)建深度模型。卷積操作是卷積神經(jīng)網(wǎng)絡(luò)的核心操作,其可以有效地
2023-08-21 16:49:51407

卷積神經(jīng)網(wǎng)絡(luò)算法原理

卷積神經(jīng)網(wǎng)絡(luò)算法原理? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)(Deep Learning)的模型,它能夠自動地從圖片、音頻、文本等數(shù)據(jù)中提
2023-08-21 16:49:54690

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN) 是一種基于多層感知器(multilayer perceptron, MLP)的深度學(xué)習(xí)
2023-08-21 16:50:01977

卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點 卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學(xué)習(xí)算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361867

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab

卷積神經(jīng)網(wǎng)絡(luò)算法代碼matlab 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)網(wǎng)絡(luò)模型,其特點是具有卷積層(Convolutional Layer
2023-08-21 16:50:11745

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:182941

10分鐘快速了解神經(jīng)網(wǎng)絡(luò)(Neural Networks)

神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)算法的基本構(gòu)建模塊。神經(jīng)網(wǎng)絡(luò)是一種機器學(xué)習(xí)算法,旨在模擬人腦的行為。它由相互連接的節(jié)點組成,也稱為人工神經(jīng)元,這些節(jié)點組織成層次結(jié)構(gòu)。Source:victorzhou.com
2023-09-21 08:30:07642

已全部加載完成