99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>訓練神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)主要來自大陸測試車隊?

訓練神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)主要來自大陸測試車隊?

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

如何訓練這些神經(jīng)網(wǎng)絡(luò)來解決問題?

神經(jīng)網(wǎng)絡(luò)建模中,經(jīng)常會出現(xiàn)關(guān)于神經(jīng)網(wǎng)絡(luò)應(yīng)該有多復(fù)雜的問題,即它應(yīng)該有多少層,或者它的濾波器矩陣應(yīng)該有多大。這個問題沒有簡單的答案。與此相關(guān),討論網(wǎng)絡(luò)過擬合和欠擬合非常重要。過擬合是模型過于復(fù)雜
2023-11-24 15:35:47237

神經(jīng)網(wǎng)絡(luò)Matlab程序

神經(jīng)網(wǎng)絡(luò)Matlab程序
2009-09-15 12:52:24

神經(jīng)網(wǎng)絡(luò)訓練時常用的一些損失函數(shù)介紹

神經(jīng)網(wǎng)絡(luò)訓練時的優(yōu)化首先是對模型的當前狀態(tài)進行誤差估計,然后為了減少下一次評估的誤差,需要使用一個能夠表示錯誤函數(shù)對權(quán)重進行更新,這個函數(shù)被稱為損失函數(shù)。損失函數(shù)的選擇與神經(jīng)網(wǎng)絡(luò)模型從示例中學
2022-10-20 17:14:15

神經(jīng)網(wǎng)絡(luò)基本介紹

神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

神經(jīng)元  第3章 EBP網(wǎng)絡(luò)(反向傳播算法)  3.1 含隱層的前饋網(wǎng)絡(luò)的學習規(guī)則  3.2 Sigmoid激發(fā)函數(shù)下的BP算法  3.3 BP網(wǎng)絡(luò)訓練測試  3.4 BP算法的改進  3.5 多層
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個項目需要用到網(wǎng)絡(luò)進行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機上做神經(jīng)網(wǎng)絡(luò)計算,這樣就可以實時計算,不依賴于上位機。所以要解決的主要是兩個
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)簡介

神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08

神經(jīng)網(wǎng)絡(luò)解決方案讓自動駕駛成為現(xiàn)實

、成本及功耗的要求。輕型嵌入式神經(jīng)網(wǎng)絡(luò)卷積式神經(jīng)網(wǎng)絡(luò) (CNN) 的應(yīng)用可分為三個階段:訓練、轉(zhuǎn)化及 CNN 在生產(chǎn)就緒解決方案中的執(zhí)行。要想獲得一個高性價比、針對大規(guī)模車輛應(yīng)用的高效結(jié)果,必須在每階段
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學習的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

AI知識科普 | 從無人相信到萬人追捧的神經(jīng)網(wǎng)絡(luò)

,神經(jīng)網(wǎng)絡(luò)之父Hiton始終堅持計算機能夠像人類一樣思考,用直覺而非規(guī)則。盡管這一觀點被無數(shù)人質(zhì)疑過無數(shù)次,但隨著數(shù)據(jù)的不斷增長和數(shù)據(jù)挖掘技術(shù)的不斷進步,神經(jīng)網(wǎng)絡(luò)開始在語音和圖像等方面超越基于邏輯的人
2018-06-05 10:11:50

CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄

CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄
2018-12-24 11:51:47

CV之YOLO:深度學習之計算機視覺神經(jīng)網(wǎng)絡(luò)tiny-yolo-5clessses訓練自己的數(shù)據(jù)集全程記錄

CV之YOLO:深度學習之計算機視覺神經(jīng)網(wǎng)絡(luò)tiny-yolo-5clessses訓練自己的數(shù)據(jù)集全程記錄
2018-12-24 11:50:57

ETPU-Z2全可編程神經(jīng)網(wǎng)絡(luò)開發(fā)平臺

工智能應(yīng)用開發(fā)可歸納為以下幾個步驟:(1)準備數(shù)據(jù)集在傳統(tǒng)的有監(jiān)督的神經(jīng)網(wǎng)絡(luò)算法中,數(shù)據(jù)集對最終的算法性能起著決定性的關(guān)鍵作用。因此,神經(jīng)網(wǎng)絡(luò)算法訓練的首要任務(wù),就是實現(xiàn)數(shù)據(jù)集的搜集工作。在機器視覺任務(wù)中,有
2020-05-18 17:13:24

MATLAB神經(jīng)網(wǎng)絡(luò)

MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)

遞歸網(wǎng)絡(luò)newelm 創(chuàng)建一Elman遞歸網(wǎng)絡(luò)2. 網(wǎng)絡(luò)應(yīng)用函數(shù)sim 仿真一個神經(jīng)網(wǎng)絡(luò)init 初始化一個神經(jīng)網(wǎng)絡(luò)adapt 神經(jīng)網(wǎng)絡(luò)的自適應(yīng)化train 訓練一個神經(jīng)網(wǎng)絡(luò)3. 權(quán)函數(shù)dotprod
2009-09-22 16:10:08

MATLAB訓練好的神經(jīng)網(wǎng)絡(luò)移植到STM32F407上

我在MATLAB中進行了神經(jīng)網(wǎng)絡(luò)模型訓練,然后將訓練好的模型的閾值和權(quán)值導(dǎo)出來,移植到STM32F407單片機上進行計算,但是在單片機上的計算結(jié)果和在MATLAB上的不一樣,一直找不到原因。代碼在
2020-06-16 11:14:28

labview BP神經(jīng)網(wǎng)絡(luò)的實現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學習工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08

matlab實現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實現(xiàn)是如何一直沒有具體實現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點
2021-08-18 07:25:21

【AI學習】第3篇--人工神經(jīng)網(wǎng)絡(luò)

`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機器學習的步驟:訓練與預(yù)測、訓練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達訓練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2申請】基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識別

神經(jīng)網(wǎng)絡(luò)編程,想基于此開發(fā)板,進行神經(jīng)網(wǎng)絡(luò)的學習,訓練測試神經(jīng)網(wǎng)絡(luò)。項目計劃:1.基于官方的文檔及資料,熟悉此開發(fā)板。2.測試官方demo,學習ARM內(nèi)核和FPGA如何協(xié)調(diào)工作。3.基于自己最近
2019-01-09 14:48:59

【PYNQ-Z2申請】基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速

項目名稱:基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速試用計劃:申請理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡(luò)的硬件加速,在PYNQ上實現(xiàn)圖像的快速處理項目計劃:1、在PC端實現(xiàn)Lnet網(wǎng)絡(luò)訓練
2018-12-19 11:37:22

【PYNQ-Z2試用體驗】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

能在外界信息的基礎(chǔ)上改變內(nèi)部結(jié)構(gòu),是一種自適應(yīng)系統(tǒng),通俗的講就是具備學習功能?,F(xiàn)代神經(jīng)網(wǎng)絡(luò)是一種非線性統(tǒng)計性數(shù)據(jù)建模工具。簡單來說,就是給定輸入,神經(jīng)網(wǎng)絡(luò)經(jīng)過一系列計算之后,輸出最終結(jié)果。這好比人的大腦
2019-03-03 22:10:19

【PYNQ-Z2試用體驗】基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識別[結(jié)項]

成功了??偨Y(jié)本文講解了基于python代碼的神經(jīng)網(wǎng)絡(luò)圖形識別。這里使用了一個較小的樣本數(shù)據(jù)訓練神經(jīng)網(wǎng)絡(luò),即完成了手寫圖形的識別。訓練樣本及測試數(shù)據(jù)來自網(wǎng)絡(luò),感興趣的朋友可以自己手寫數(shù)字來進行測試
2019-03-18 21:51:33

【PYNQ-Z2試用體驗】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動駕駛小車 - 項目規(guī)劃

上的USB攝像頭作為主要傳感器,采集得到的前方道路圖像經(jīng)過數(shù)據(jù)預(yù)處理后,接入神經(jīng)網(wǎng)絡(luò)的輸入層,由神經(jīng)網(wǎng)絡(luò)的輸出層狀態(tài)將生成控制信號,控制小車的直走、左轉(zhuǎn)、右轉(zhuǎn)、與停止。交通標識識別功能同樣使用USB
2019-03-02 23:10:52

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)在學習新知識的同時要保持對之前學習的知識的記憶,而不是狗熊掰棒子SOM神經(jīng)網(wǎng)絡(luò)是一種競爭學習型的無監(jiān)督神經(jīng)網(wǎng)絡(luò),它能將高維輸入數(shù)據(jù)映射到低維空間(通常為二維),同時保持輸入數(shù)據(jù)在高維空間
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)原理及下載

這個網(wǎng)絡(luò)輸入和相應(yīng)的輸出來“訓練”這個網(wǎng)絡(luò),網(wǎng)絡(luò)根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點之間的權(quán)值來滿足輸入和輸出。這樣,當訓練結(jié)束后,我們給定一個輸入,網(wǎng)絡(luò)便會根據(jù)自己已調(diào)節(jié)好的權(quán)值計算出一個輸出。這就是神經(jīng)網(wǎng)絡(luò)的簡單原理。  神經(jīng)網(wǎng)絡(luò)原理下載-免費
2008-06-19 14:40:42

人工神經(jīng)網(wǎng)絡(luò)實現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門深度神經(jīng)網(wǎng)絡(luò)

分辨率、轉(zhuǎn)換、遷移、描述等等都已經(jīng)可以使用深度學習技術(shù)實現(xiàn)。其背后的技術(shù)可以一言以蔽之:深度卷積神經(jīng)網(wǎng)絡(luò)具有超強的圖像特征提取能力。其中,風格遷移算法的成功,其主要基于兩點:1.兩張圖像經(jīng)過預(yù)訓練
2018-05-08 15:57:47

優(yōu)化神經(jīng)網(wǎng)絡(luò)訓練方法有哪些?

優(yōu)化神經(jīng)網(wǎng)絡(luò)訓練方法有哪些?
2022-09-06 09:52:36

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42

關(guān)于BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的確定!!

請問用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進行外推預(yù)測?
2014-02-08 14:23:06

分享一種400×25×2的三層BP神經(jīng)網(wǎng)絡(luò)

本文首先簡單的選取了少量的樣本并進行樣本歸一化,這樣就得到了可供訓練訓練集和測試集。然后訓練了400×25×2的三層BP神經(jīng)網(wǎng)絡(luò),最后對最初步的模型進行了誤差分析并找到了一種效果顯著的提升方法!
2021-07-12 06:49:37

卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程

以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?

卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

十余年來快速發(fā)展的嶄新領(lǐng)域,越來越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學習模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來深度學習任務(wù)上逐步提高。由于可以自動學習樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡介:什么是機器學習?

復(fù)雜數(shù)據(jù)中提取特征的強大工具。例如,這包括音頻信號或圖像中的復(fù)雜模式識別。本文討論了 CNN 相對于經(jīng)典線性規(guī)劃的優(yōu)勢。后續(xù)文章“訓練卷積神經(jīng)網(wǎng)絡(luò):什么是機器學習?——第2部分”將討論如何訓練CNN
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理的簡要介紹

為提升識別準確率,采用改進神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進行訓練。整體處理過程分為兩步:圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學習電機的智能控制,上周學習了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學習來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡(luò)的手勢識別系統(tǒng)

得出得神經(jīng)網(wǎng)絡(luò)學習誤差曲線和數(shù)字識別結(jié)果如圖1 所示?!   ”疚膶? ~ 9 共10 類數(shù)據(jù)中的每類取20 個做測試樣本,共200 個測試樣本對系統(tǒng)進行性能測試。測試結(jié)果如表1 所列。由表1 中的數(shù)據(jù)
2018-11-13 16:04:45

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于光學芯片的神經(jīng)網(wǎng)絡(luò)訓練解析,不看肯定后悔

基于光學芯片的神經(jīng)網(wǎng)絡(luò)訓練解析,不看肯定后悔
2021-06-21 06:33:55

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)設(shè)計

作者:Nagesh Gupta 創(chuàng)始人兼 CEOAuviz Systems Nagesh@auvizsystems.com憑借出色的性能和功耗指標,賽靈思 FPGA 成為設(shè)計人員構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)
2019-06-19 07:24:41

如何使用Keras框架搭建一個小型的神經(jīng)網(wǎng)絡(luò)多層感知器

本文介紹了如何使用Keras框架,搭建一個小型的神經(jīng)網(wǎng)絡(luò)-多層感知器,并通過給定數(shù)據(jù)進行計算訓練,最好將訓練得到的模型提取出參數(shù),放在51單片機上進行運行。
2021-11-22 07:00:41

如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?

如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11

如何移植一個CNN神經(jīng)網(wǎng)絡(luò)到FPGA中?

訓練一個神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂數(shù)字電路設(shè)計,是個不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03

如何設(shè)計BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

,并能在腦海中重現(xiàn)這些圖像信息,這不僅與人腦的海量信息存儲能力有關(guān),還與人腦的信息處理能力,包括數(shù)據(jù)壓縮能力有關(guān)。在各種神經(jīng)網(wǎng)絡(luò)中,多層前饋神經(jīng)網(wǎng)絡(luò)具有很強的信息處理能力,由于其采用BP算法,因此也
2019-08-08 06:11:30

如何進行高效的時序圖神經(jīng)網(wǎng)絡(luò)訓練

現(xiàn)有的圖數(shù)據(jù)規(guī)模極大,導(dǎo)致時序圖神經(jīng)網(wǎng)絡(luò)訓練需要格外長的時間,因此使用多GPU進行訓練變得成為尤為重要,如何有效地將多GPU用于時序圖神經(jīng)網(wǎng)絡(luò)訓練成為一個非常重要的研究議題。本文提供了兩種方式來
2022-09-28 10:37:20

容差模擬電路軟故障診斷的小波與量子神經(jīng)網(wǎng)絡(luò)方法設(shè)計

的成分做為電路故障特征,再輸入給量子神經(jīng)網(wǎng)絡(luò)。不僅解決了一個可測試點問題,并提高了辨識故障類別的能力,而且在網(wǎng)絡(luò)訓練之前,利用主元分析降低了網(wǎng)絡(luò)輸入維數(shù)。通過實驗可以看出,這種方法不僅能實現(xiàn)模擬電路單軟軟故障診斷,也能實現(xiàn)多軟軟故障診斷,實驗統(tǒng)計結(jié)果表明:故障診斷率為100%。
2019-07-05 08:06:02

嵌入式中的人工神經(jīng)網(wǎng)絡(luò)的相關(guān)資料分享

人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個挑戰(zhàn)是如何在嵌入式設(shè)備上實現(xiàn)它,同時優(yōu)化性能和功率效率。 使用云計算并不總是一個選項,尤其是當
2021-11-09 08:06:27

訓練好的神經(jīng)網(wǎng)絡(luò)用于應(yīng)用的時候,權(quán)值是不是不能變了?

訓練好的神經(jīng)網(wǎng)絡(luò)用于應(yīng)用的時候,權(quán)值是不是不能變了????就是已經(jīng)訓練好的神經(jīng)網(wǎng)絡(luò)是不是相當于得到一個公式了,權(quán)值不能變了
2016-10-24 21:55:22

怎么解決人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題

本文提出了一個基于FPGA 的信息處理的實例:一個簡單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計,并考慮了模塊間數(shù)據(jù)傳輸信號同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07

求助基于labview的神經(jīng)網(wǎng)絡(luò)pid控制

小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個控制方法可以嗎?有誰會神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16

求助大神關(guān)于神經(jīng)網(wǎng)絡(luò)的問題

求助大神 小的現(xiàn)在有個難題: 一組車重實時數(shù)據(jù) 對應(yīng)一個車重的最終數(shù)值(一個一維數(shù)組輸入對應(yīng)輸出一個數(shù)值) 這其中可能經(jīng)過均值、方差、去掉N個最大值、、、等等的計算 我的目的就是弄清楚這個中間計算過程 最近實在想不出什么好辦法就打算試試神經(jīng)網(wǎng)絡(luò) 請教大神用什么神經(jīng)網(wǎng)絡(luò)好求神經(jīng)網(wǎng)絡(luò)程序
2016-07-14 13:35:44

用S3C2440訓練神經(jīng)網(wǎng)絡(luò)算法

嵌入式設(shè)備自帶專用屬性,不適合作為隨機性很強的人工智能深度學習訓練平臺。想象用S3C2440訓練神經(jīng)網(wǎng)絡(luò)算法都會頭皮發(fā)麻,PC上的I7、GPU上都很吃力,大部分都要依靠服務(wù)器來訓練。但是一旦算法訓練
2021-08-17 08:51:57

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用

針對模糊神經(jīng)網(wǎng)絡(luò)訓練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)訓練過程.由于基本PSO算法存在
2010-05-06 09:05:35

脈沖耦合神經(jīng)網(wǎng)絡(luò)在FPGA上的實現(xiàn)誰會?

脈沖耦合神經(jīng)網(wǎng)絡(luò)(PCNN)在FPGA上的實現(xiàn),實現(xiàn)數(shù)據(jù)分類功能,有報酬。QQ470345140.
2013-08-25 09:57:14

計算機視覺神經(jīng)網(wǎng)絡(luò)資料全集

CV之YOLOv3:深度學習之計算機視覺神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25

請問Labveiw如何調(diào)用matlab訓練好的神經(jīng)網(wǎng)絡(luò)模型呢?

我在matlab中訓練好了一個神經(jīng)網(wǎng)絡(luò)模型,想在labview中調(diào)用,請問應(yīng)該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡(luò)工具包嗎?
2018-07-05 17:32:32

非局部神經(jīng)網(wǎng)絡(luò),打造未來神經(jīng)網(wǎng)絡(luò)基本組件

`將非局部計算作為獲取長時記憶的通用模塊,提高神經(jīng)網(wǎng)絡(luò)性能在深度神經(jīng)網(wǎng)絡(luò)中,獲取長時記憶(long-range dependency)至關(guān)重要。對于序列數(shù)據(jù)(例如語音、語言),遞歸運算
2018-11-12 14:52:50

BP神經(jīng)網(wǎng)絡(luò)在狀態(tài)監(jiān)測數(shù)據(jù)趨勢預(yù)測中的應(yīng)用

應(yīng)用神經(jīng)網(wǎng)絡(luò)理論,建立了預(yù)測狀態(tài)監(jiān)測數(shù)據(jù)趨勢的BP 神經(jīng)網(wǎng)絡(luò)模型,并通MATLAB 實現(xiàn)了仿真編程。實驗中,選取多組數(shù)據(jù)網(wǎng)絡(luò)進行了訓練測試,證實了算法和模型的有效性。
2009-09-11 15:53:1026

基于小波神經(jīng)網(wǎng)絡(luò)的信息系綜合評價系統(tǒng)的訓練算法

基于小波神經(jīng)網(wǎng)絡(luò)的信息系綜合評價系統(tǒng)的訓練算法 為了對基于小波神經(jīng)網(wǎng)絡(luò)的信息系統(tǒng)綜合評價系統(tǒng)進行訓練,必須確定網(wǎng)絡(luò)參數(shù)Wk ,bk
2009-02-27 09:36:12665

基于自適應(yīng)果蠅算法的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)訓練

基于自適應(yīng)果蠅算法的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)訓練_霍慧慧
2017-01-03 17:41:580

解讀多層神經(jīng)網(wǎng)絡(luò)反向傳播原理

訓練神經(jīng)網(wǎng)絡(luò),我們需要“訓練數(shù)據(jù)集”。訓練數(shù)據(jù)集是由對應(yīng)目標z(期望輸出)的輸入信號(x_1和 x_2)組成。神經(jīng)網(wǎng)絡(luò)訓練是一個迭代過程。在每個迭代中,使用來自訓練數(shù)據(jù)集的新數(shù)據(jù)修改網(wǎng)絡(luò)節(jié)點的加權(quán)系數(shù)。整個迭代由前向計算和反向傳播兩個過程組成。
2017-10-18 18:20:308226

訓練神經(jīng)網(wǎng)絡(luò)的五大算法

項兩部分。誤差項衡量神經(jīng)網(wǎng)絡(luò)模型在訓練數(shù)據(jù)集上的擬合程度,而正則項則是控制模型的復(fù)雜程度,防止出現(xiàn)過擬合現(xiàn)象。
2017-11-16 15:30:5412889

BP神經(jīng)網(wǎng)絡(luò)MapReduce訓練

為提高大樣本集情況下BP神經(jīng)網(wǎng)絡(luò)訓練效率,提出了一種基于局部收斂權(quán)陣進化的BP神經(jīng)網(wǎng)絡(luò)MapReduce訓練方法,以各Map任務(wù)基于其輸入數(shù)據(jù)分片訓練產(chǎn)生的局部收斂權(quán)陣作為初始種群,在Reduce
2017-11-23 15:07:4012

基于神經(jīng)網(wǎng)絡(luò)的路徑覆蓋測試數(shù)據(jù)生成方法

間.為了降低運行程序帶來的時間消耗,提出一種基于神經(jīng)網(wǎng)絡(luò)的路徑覆蓋測試數(shù)據(jù)進化生成方法,主要思想是:首先,利用一定樣本訓練神經(jīng)網(wǎng)絡(luò),以模擬個體的適應(yīng)值;在利用遺傳算法生成測試數(shù)據(jù)時,先利用訓練好的神經(jīng)網(wǎng)絡(luò)粗略
2018-01-15 11:35:220

BP神經(jīng)網(wǎng)絡(luò)概述

算法進行訓練。值得指出的是,BP算法不僅可用于多層前饋神經(jīng)網(wǎng)絡(luò),還可以用于其他類型的神經(jīng)網(wǎng)絡(luò),例如訓練遞歸神經(jīng)網(wǎng)絡(luò)。但我們通常說 “BP 網(wǎng)絡(luò)” 時,一般是指用 BP 算法訓練的多層前饋神經(jīng)網(wǎng)絡(luò)
2018-06-19 15:17:1542819

利用來自于Quick Draw游戲的數(shù)百萬涂鴉訓練神經(jīng)網(wǎng)絡(luò)

我們進行了一個交互式網(wǎng)絡(luò)實驗,讓你能與一個名為 sketch-rnn 的循環(huán)神經(jīng)網(wǎng)絡(luò)模型一起繪制作品。我們利用來自于 Quick Draw! 游戲的數(shù)百萬涂鴉訓練神經(jīng)網(wǎng)絡(luò)。一旦開始繪制對象,sketch-rnn 將提出許多可行的方法基于你中斷的位置繼續(xù)繪制此對象。試試第一個演示。
2018-07-25 10:24:183175

神經(jīng)網(wǎng)絡(luò)分類

本視頻主要詳細介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)
2019-04-02 15:29:2212601

特斯拉專利從龐大車隊中獲取數(shù)據(jù)訓練自動駕駛神經(jīng)網(wǎng)絡(luò)

3月24日消息,據(jù)國外媒體報道,電動汽車制造商特斯拉申請了一項專利,該專利涉及如何從其龐大的客戶車隊中獲取訓練數(shù)據(jù),以訓練其自動駕駛神經(jīng)網(wǎng)絡(luò)。
2020-03-24 13:42:371814

教大家怎么選擇神經(jīng)網(wǎng)絡(luò)的超參數(shù)

minibatch 的大小, 輸出神經(jīng)元的編碼方式, 代價函數(shù)的選擇, 權(quán)重初始化的方法, 神經(jīng)元激活函數(shù)的種類, 參加訓練模型數(shù)據(jù)的規(guī)模 這些都是可以影響神經(jīng)網(wǎng)絡(luò)學習速度和最后分類結(jié)果,其中神經(jīng)網(wǎng)絡(luò)的學習速度主要根據(jù)訓練集上代價函數(shù)下降的快慢有關(guān),而最后的分類的結(jié)果主要
2021-06-19 14:49:143122

什么是神經(jīng)網(wǎng)絡(luò)?為什么說神經(jīng)網(wǎng)絡(luò)很重要?神經(jīng)網(wǎng)絡(luò)如何工作?

神經(jīng)網(wǎng)絡(luò)是一個具有相連節(jié)點層的計算模型,其分層結(jié)構(gòu)與大腦中的神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)相似。神經(jīng)網(wǎng)絡(luò)可通過數(shù)據(jù)進行學習,因此,可訓練其識別模式、對數(shù)據(jù)分類和預(yù)測未來事件。
2023-07-26 18:28:411623

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓練算法

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓練算法? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)一直是深度學習領(lǐng)域重要的應(yīng)用之一,被廣泛應(yīng)用于圖像、視頻、語音等領(lǐng)域
2023-08-21 16:41:37859

卷積神經(jīng)網(wǎng)絡(luò)模型訓練步驟

模型訓練是將模型結(jié)構(gòu)和模型參數(shù)相結(jié)合,通過樣本數(shù)據(jù)的學習訓練模型,使得模型可以對新的樣本數(shù)據(jù)進行準確的預(yù)測和分類。本文將詳細介紹 CNN 模型訓練的步驟。 CNN 模型結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的輸入
2023-08-21 16:42:00885

卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點 卷積神經(jīng)網(wǎng)絡(luò)和深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機器學習算法,其主要特點是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動調(diào)整神經(jīng)元之間的權(quán)重,從而實現(xiàn)對大規(guī)模數(shù)據(jù)進行預(yù)測和分類。卷積神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361869

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分

卷積神經(jīng)網(wǎng)絡(luò)主要包括哪些 卷積神經(jīng)網(wǎng)絡(luò)組成部分 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一類廣泛應(yīng)用于計算機視覺、自然語言處理等領(lǐng)域的人工神經(jīng)網(wǎng)絡(luò)。它具有良好的空間特征學習能力,能夠處理具有二維或三維形狀的輸入數(shù)據(jù)
2023-08-21 17:15:22938

Kaggle知識點:訓練神經(jīng)網(wǎng)絡(luò)的7個技巧

訓練神經(jīng)網(wǎng)絡(luò)的挑戰(zhàn)在訓練數(shù)據(jù)集的新示例之間取得平衡。七個具體的技巧,可幫助您更快地訓練出更好的神經(jīng)網(wǎng)絡(luò)模型。學習和泛化使用反向傳播設(shè)計和訓練網(wǎng)絡(luò)需要做出許多看似任
2023-12-30 08:27:54319

BP神經(jīng)網(wǎng)絡(luò)算法的基本流程

訓練經(jīng)過約50次左右迭代,在訓練集上已經(jīng)能達到99%的正確率,在測試集上的正確率為90.03%,單純的BP神經(jīng)網(wǎng)絡(luò)能夠提升的空間不大了,但kaggle上已經(jīng)有人有卷積神經(jīng)網(wǎng)絡(luò)測試集達到了99.3%的準確率。
2024-03-20 09:58:4440

已全部加載完成