99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

周志華等人新書:《演化學習:理論和算法的進展》正式上線!

DPVg_AI_era ? 來源:lp ? 2019-04-19 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,由周志華教授、俞揚教授和錢超研究員共同完成的新書——《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》正式上線!堪稱“寶藏級”新書,速來收藏。

愛逛知乎的小編在2019年4月13日,發(fā)現(xiàn)一直關注的俞揚教授發(fā)了一篇推文"致青春",點進去一看,發(fā)現(xiàn)了”寶藏“!

于是便立即聯(lián)系了俞揚教授,詢問是否可以將這份資源轉發(fā)或者介紹給大家。俞教授也很爽快,沒過多久就給了肯定的答復。

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》為原書名,因為微信公眾號標題長度有限制,所以自行翻譯成了中文:《演化學習:理論和算法的進展》。其中EvolutionaryLearning網(wǎng)上很多翻譯成:進化學習。但我閱讀了俞揚教授的原文,里面說是演化學習,所以這里為了統(tǒng)一,我還是標明演化學習。

中文僅供參考,若翻譯有問題,還請指正,大家還是以英文為主。

本書是由周志華教授、俞揚教授和錢超研究員三位共同完成,這里簡單介紹一下三位:

周志華,現(xiàn)任南京大學計算機科學與技術系主任、南京大學計算機軟件新技術國家重點實驗室常務副主任、機器學習與數(shù)據(jù)挖掘研究所(LAMDA)所長,校學術委員會委員。美國計算機學會(ACM)、美國科學促進會(AAAS)、國際人工智能學會(AAAI)、國際電氣電子工程師學會(IEEE)、國際模式識別學會(IAPR)、國際工程技術學會(IET/IEE)、中國計算機學會(CCF)、中國人工智能學會(CAAI)等學會的會士(Fellow),歐洲科學院外籍院士。南京市政府人工智能產(chǎn)業(yè)顧問、證監(jiān)會科技監(jiān)管專家咨詢委員會委員、江蘇省政協(xié)委員、江蘇省青聯(lián)副主席等。

主要從事人工智能、機器學習、數(shù)據(jù)挖掘等領域的研究工作。主持多項科研課題,出版《機器學習》(2016)與《EnsembleMethods:FoundationsandAlgorithms》(2012),在一流國際期刊和頂級國際會議發(fā)表論文百余篇,被引用三萬余次。經(jīng)常擔任NIPS、ICML、AAAI、IJCAI、KDD等重要國際學術會議的領域主席。擔任中國計算機學會常務理事、人工智能專業(yè)委員會主任,中國人工智能學會常務理事,江蘇省計算機學會副理事長,江蘇省人工智能學會理事長,IEEE南京分部副主席。

周志華教授個人信息節(jié)選自:

http://cs.nju.edu.cn/zhouzh/zhouzh.files/resume_cn.htm

俞揚,博士,南京大學副教授,博士生導師。主要研究領域為人工智能、機器學習、強化學習。2011年8月加入南京大學計算機科學與技術系、機器學習與數(shù)據(jù)挖掘研究所(LAMDA)從事教學與科研工作。

曾獲2013年全國優(yōu)秀博士學位論文獎、2011年中國計算機學會優(yōu)秀博士學位論文獎。發(fā)表論文40余篇,包括多篇ArtificialIntelligence、IJCAI、AAAI、NIPS、KDD等人工智能、機器學習和數(shù)據(jù)挖掘國際頂級期刊和頂級會議論文。入選2018年IEEEIntelligentSystems雜志評選的AI's10toWatch,獲2018PAKDDEarlyCareerAward、2017年江蘇省計算機學會青年科技獎。共同發(fā)起并主辦了亞洲強化學習系列研討會(AWRL)、中國演化計算與學習系列研討會(ECOLE),任人工智能領域國際頂級會議IJCAI'18領域主席、ICPR'18領域主席、ACML'17領域主席,任IEEE計算智能協(xié)會數(shù)據(jù)挖掘與大數(shù)據(jù)分析技術委員會委員、中國人工智能學會機器學習專委會委員、中國計算機學會人工智能與模式識別專委會委員,ArtificialIntelligence、IJCAI、AAAI、KDD、ICML、NIPS、CVPR、ICCV等多個一流期刊的評審人和會議的程序委員。

俞揚教授個人信息節(jié)選自:

http://lamda.nju.edu.cn/yuy/cv_ch.ashx

錢超是中國科學技術大學副研究員。他的研究興趣是人工智能,演化計算和機器學習。他在領先的國際期刊和會議論文集上發(fā)表了20多篇論文,包括人工智能,演化計算,IEEE演化計算交易,Algorithmica,NIPS,IJCAI,AAAI等。他贏得了ACMGECCO2011年度最佳論文獎(TheoryTrack)和IDEAL2016年度最佳論文獎。他還曾擔任IEEE計算智能學會(CIS)工作組“TheoreticalFoundationsofBio-inspiredComputation”的主席。

錢超研究員個人信息節(jié)選自:

http://staff.ustc.edu.cn/~chaoqian/

https://www.springer.com/cn/book/9789811359552#aboutAuthors

下面看看俞揚教授簡單介紹該書的知乎原文"致青春"

https://zhuanlan.zhihu.com/p/62178187

正文(致青春)

最近與周老師、錢超一起完成了一本書。書的名字叫

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》,但是對于我來說,可以叫“致青春”。從2005年碩士入學開始,抱著演化算法理論這個硬骨頭開始啃。

我的數(shù)學基礎并不好,在我同一屆進入LAMDA的同學中,毫無疑問是墊底,但也許優(yōu)點是膽子大,周老師說這個方向重要,那就干。這個領域真是四處不討好,讓我深刻體驗了什么叫冷板凳。即使是在演化計算領域里,對于搞應用的來說,理論太滯后,沒有指導意義,甚至關注理論進展的人都很少。而放在整個人工智能領域里,更是艱難,當時演化計算就已經(jīng)是在頂級會議上冷下去的話題了。

2000年前,IJCAI還出現(xiàn)了演化計算的session,2000年左右,隨著上一波演化神經(jīng)網(wǎng)絡結構優(yōu)化的興起演化算法也還在火(是的,NAS并不是這幾年發(fā)明的,20年前的東西了),之后也隨著神經(jīng)網(wǎng)絡的冷淡,大家放棄啟發(fā)擁抱理論更清楚的方法,演化計算也迅速在頂級會議上隱匿。所以演化計算的論文要發(fā)在頂級會議上極其困難,而理論更甚,不僅要回答技術問題,還要回答諸如這個方向還有研究價值嗎、這個理論怎么指導算法,之類的問題。

回想起來在AAAI2006發(fā)表的第一篇做演化算法復雜度分析的論文,真是走運,其中一個審稿人一個字審稿意見都沒寫,直接打了滿分。

看到最終成稿,收錄了我們十幾年努力的結果,感覺這么多年也沒白做,現(xiàn)在從理論、算法、到應用效果都能打通,AAAI、IJCAI、NIPS也都有發(fā)表了,尤其是NIPS2017的工作,回答了一個長久以來演化計算領域面臨的核心挑戰(zhàn):“有什么問題能證明是以往算法做不到而演化算法能做到的”。

致我的青春年華。以后只能是個拼搏的中年人了。。。

書籍鏈接:

https://www.springer.com/cn/book/9789811359552

《EvolutionaryLearning:AdvancesinTheoriesandAlgorithms》簡介

許多機器學習任務涉及解決復雜的優(yōu)化問題,例如處理不可微分,非連續(xù)和非唯一的目標函數(shù);在某些情況下,甚至難以定義明確的目標函數(shù)。演化學習(Evolutionarylearning)應用演化算法來解決機器學習中的優(yōu)化問題,并在許多應用中產(chǎn)生了令人滿意的結果。然而,由于演化優(yōu)化的啟發(fā)性特征,迄今為止的大多數(shù)結果都是經(jīng)驗性的,缺乏理論支持。這個缺點使得進化學習不再受到機器學習社區(qū)的歡迎。

最近,為解決這個問題付出了相當大的努力。本書將分成系列來介紹這些努力,共分為四個部分:

第一部分:簡要向讀者介紹演化學習并提供了一些預備知識;

第二部分:介紹演化算法中運行時間和近似性能分析的一般理論工具;

第三部分:提出許多關于演化優(yōu)化中主要因素的理論發(fā)現(xiàn),例如recombination,representation,inaccuratefitnessevaluation,andpopulation;

第四部分:討論了演化學習算法的發(fā)展,為幾個代表性任務提供了可證明的理論保證。

致謝

在此感謝周志華教授、俞揚教授和錢超研究員整理這么棒的書籍!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1807

    文章

    49035

    瀏覽量

    249751
  • 數(shù)據(jù)挖掘

    關注

    1

    文章

    406

    瀏覽量

    24721
  • 機器學習
    +關注

    關注

    66

    文章

    8505

    瀏覽量

    134677

原文標題:周志華等人新書:《演化學習:理論和算法的進展》正式上線!

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    NVIDIA Isaac Lab可用環(huán)境與強化學習腳本使用指南

    Lab 是一個適用于機器人學習的開源模塊化框架,其模塊化高保真仿真適用于各種訓練環(huán)境,Isaac Lab 同時支持模仿學習(模仿人類)和強化學習(在嘗試和錯誤中進行學習),為所有機器
    的頭像 發(fā)表于 07-14 15:29 ?595次閱讀
    NVIDIA Isaac Lab可用環(huán)境與強<b class='flag-5'>化學習</b>腳本使用指南

    18個常用的強化學習算法整理:從基礎方法到高級模型的理論技術與代碼實現(xiàn)

    本來轉自:DeepHubIMBA本文系統(tǒng)講解從基本強化學習方法到高級技術(如PPO、A3C、PlaNet等)的實現(xiàn)原理與編碼過程,旨在通過理論結合代碼的方式,構建對強化學習算法的全面理
    的頭像 發(fā)表于 04-23 13:22 ?437次閱讀
    18個常用的強<b class='flag-5'>化學習</b><b class='flag-5'>算法</b>整理:從基礎方法到高級模型的<b class='flag-5'>理論</b>技術與代碼實現(xiàn)

    算法進化論:從參數(shù)剪枝到意識解碼的 AI 革命

    電子發(fā)燒友網(wǎng)報道(文 / 李彎彎)在人工智能領域,算法創(chuàng)新無疑是推動技術持續(xù)前行的核心動力源泉。近些年來,隨著深度學習、強化學習等前沿技術相繼取得重大突破,AI 算法在效率提升、可解釋
    的頭像 發(fā)表于 04-19 00:38 ?1779次閱讀

    射頻電路設計——理論與應用

    本資料從低頻電路理論到射頻、微波電路理論演化過程出發(fā),討論以低頻電路理論為基礎結合高頻電壓、電流的波動特征來分析和設計射頻、微波系統(tǒng)的方法——微波等效電路法,使不具備電磁場
    發(fā)表于 04-03 11:41

    十年磨一劍,我的新書上市了!

    大家好,我是皮哥Peter,十年磨一劍,我的新書《打通Linux操作系統(tǒng)和芯片開發(fā)》上市了!今天,新書開啟了5折優(yōu)惠,滿滿的干貨,高顏值,雙色印刷,手感厚實,新書原價139元,限時半價,只要69.5
    的頭像 發(fā)表于 04-01 07:33 ?373次閱讀
    十年磨一劍,我的<b class='flag-5'>新書</b>上市了!

    銀基數(shù)字鑰匙平臺正式上線

    領先的汽車智能化解決方案供應商上海銀基科技股份有限公司正式宣布,旗下支持Apple錢包中的數(shù)字車鑰匙接入的銀基數(shù)字鑰匙平臺正式上線,該平臺全面適配CCC國際標準,標志著數(shù)字鑰匙全球化部署進程取得重要進展。
    的頭像 發(fā)表于 02-28 13:47 ?550次閱讀

    詳解RAD端到端強化學習后訓練范式

    受限于算力和數(shù)據(jù),大語言模型預訓練的 scalinglaw 已經(jīng)趨近于極限。DeepSeekR1/OpenAl01通過強化學習后訓練涌現(xiàn)了強大的推理能力,掀起新一輪技術革新。
    的頭像 發(fā)表于 02-25 14:06 ?604次閱讀
    詳解RAD端到端強<b class='flag-5'>化學習</b>后訓練范式

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了學習環(huán)
    的頭像 發(fā)表于 01-02 13:43 ?541次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,機器<b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    螞蟻集團收購邊塞科技,吳翼出任強化學習實驗室首席科學家

    近日,專注于模型賽道的初創(chuàng)企業(yè)邊塞科技宣布被螞蟻集團收購。據(jù)悉,此次交易完成后,邊塞科技將保持獨立運營,而原投資人已全部退出。 與此同時,螞蟻集團近期宣布成立強化學習實驗室,旨在推動大模型強化學習
    的頭像 發(fā)表于 11-22 11:14 ?1593次閱讀

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習等機器
    的頭像 發(fā)表于 11-15 09:19 ?1238次閱讀

    如何使用 PyTorch 進行強化學習

    的計算圖和自動微分功能,非常適合實現(xiàn)復雜的強化學習算法。 1. 環(huán)境(Environment) 在強化學習中,環(huán)境是一個抽象的概念,它定義了智能體(agent)可以執(zhí)行的動作(actions)、觀察到
    的頭像 發(fā)表于 11-05 17:34 ?1054次閱讀

    庫克訪華透露Apple Intelligence國內(nèi)上線進展

    10月23日,蘋果CEO庫克到訪新浪總部,期間有現(xiàn)場觀眾詢問關于Apple Intelligence服務在國內(nèi)何時上線的問題。庫克對此回應稱,蘋果正在積極推進相關工作,但這一服務上線背后涉及一個具體的監(jiān)管流程,需要完成所有必要步驟,并希望能盡快為中國消費者帶來這一服務。
    的頭像 發(fā)表于 10-23 11:47 ?856次閱讀

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第一章人工智能驅(qū)動的科學創(chuàng)新學習心得

    學科之間的交叉融合,形成了一種全新的科學研究范式。AI技術打破了學科壁壘,使得物理學、化學、生物學、天文學等領域的研究者能夠共享數(shù)據(jù)和算法,共同解決復雜問題。這種跨學科的合作不僅拓寬了科學研究的視野
    發(fā)表于 10-14 09:12

    谷歌AlphaChip強化學習工具發(fā)布,聯(lián)發(fā)科天璣芯片率先采用

    近日,谷歌在芯片設計領域取得了重要突破,詳細介紹了其用于芯片設計布局的強化學習方法,并將該模型命名為“AlphaChip”。據(jù)悉,AlphaChip有望顯著加速芯片布局規(guī)劃的設計流程,并幫助芯片在性能、功耗和面積方面實現(xiàn)更優(yōu)表現(xiàn)。
    的頭像 發(fā)表于 09-30 16:16 ?705次閱讀

    bq2750x系列中的Impedance Track?電池電量監(jiān)測算法理論及實現(xiàn)

    電子發(fā)燒友網(wǎng)站提供《bq2750x系列中的Impedance Track?電池電量監(jiān)測算法理論及實現(xiàn).pdf》資料免費下載
    發(fā)表于 08-30 10:21 ?1次下載
    bq2750x系列中的Impedance Track?電池電量監(jiān)測<b class='flag-5'>算法</b>的<b class='flag-5'>理論</b>及實現(xiàn)