99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

谷歌最便宜TPU值不值得買?TPU在執(zhí)行神經(jīng)網(wǎng)絡(luò)計(jì)算方面的優(yōu)勢(shì)

DPVg_AI_era ? 來(lái)源:lp ? 2019-03-21 09:09 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

谷歌本月推出千元級(jí)搭載Edge TPU芯片的開(kāi)發(fā)板,性能令人期待。本文以可視化圖形的方式,對(duì)比TPU、GPUCPU,解釋了TPU在執(zhí)行神經(jīng)網(wǎng)絡(luò)計(jì)算方面的優(yōu)勢(shì)。

谷歌最便宜 TPU 值不值得買?

谷歌 Edge TPU 在本月初終于公布價(jià)格 —— 不足 1000 元人民幣,遠(yuǎn)低于 TPU。

實(shí)際上,Edge TPU 基本上就是機(jī)器學(xué)習(xí)樹(shù)莓派,它是一個(gè)用 TPU 在邊緣進(jìn)行推理的設(shè)備。

Edge TPU(安裝在 Coral 開(kāi)發(fā)板上)

云 vs 邊緣

Edge TPU顯然是在邊緣(edge)運(yùn)行的,但邊緣是什么呢?為什么我們不選擇在云上運(yùn)行所有東西呢?

在云中運(yùn)行代碼意味著你使用的CPU、GPU和TPU都是通過(guò)瀏覽器提供的。在云中運(yùn)行代碼的主要優(yōu)點(diǎn)是,你可以為特定的代碼分配必要的計(jì)算能力(訓(xùn)練大型模型可能需要大量的計(jì)算)。

邊緣與云相反,意味著你是在本地運(yùn)行代碼(也就是說(shuō)你能夠?qū)嶋H接觸到運(yùn)行代碼的設(shè)備)。在邊緣運(yùn)行代碼的主要優(yōu)點(diǎn)是沒(méi)有網(wǎng)絡(luò)延遲。由于物聯(lián)網(wǎng)設(shè)備通常要頻繁地生成數(shù)據(jù),因此運(yùn)行在邊緣上的代碼非常適合基于物聯(lián)網(wǎng)的解決方案。

對(duì)比 CPU、GPU,深度剖析 TPU

TPU(Tensor Processing Unit, 張量處理器)是類似于CPU或GPU的一種處理器。不過(guò),它們之間存在很大的差異。最大的區(qū)別是TPU是ASIC,即專用集成電路。ASIC經(jīng)過(guò)優(yōu)化,可以執(zhí)行特定類型的應(yīng)用程序。對(duì)于TPU來(lái)說(shuō),它的特定任務(wù)就是執(zhí)行神經(jīng)網(wǎng)絡(luò)中常用的乘積累加運(yùn)算。CPU和GPU并未針對(duì)特定類型的應(yīng)用程序進(jìn)行優(yōu)化,因此它們不是ASIC。

下面我們分別看看 CPU、GPU 和 TPU 如何使用各自的架構(gòu)執(zhí)行累積乘加運(yùn)算:

在 CPU 上進(jìn)行累積乘加運(yùn)算

CPU 通過(guò)從內(nèi)存中讀取每個(gè)輸入和權(quán)重,將它們與其 ALU (上圖中的計(jì)算器) 相乘,然后將它們寫回內(nèi)存中,最后將所有相乘的值相加,從而執(zhí)行乘積累加運(yùn)算。

現(xiàn)代 CPU 通過(guò)其每個(gè)內(nèi)核上的大量緩存、分支預(yù)測(cè)和高時(shí)鐘頻率得到增強(qiáng)。這些都有助于降低 CPU 的延遲。

GPU 上的乘積累加運(yùn)算

GPU 的原理類似,但它有成千上萬(wàn)的 ALU 來(lái)執(zhí)行計(jì)算。計(jì)算可以在所有 ALU 上并行進(jìn)行。這被稱為 SIMD (單指令流多數(shù)據(jù)流),一個(gè)很好的例子就是神經(jīng)網(wǎng)絡(luò)中的多重加法運(yùn)算。

然而,GPU 并不使用上述那些能夠降低延遲的功能。它還需要協(xié)調(diào)它的數(shù)千個(gè) ALU,這進(jìn)一步減少了延遲。

簡(jiǎn)而言之,GPU 通過(guò)并行計(jì)算來(lái)大幅提高吞吐量,代價(jià)是延遲增加?;蛘邠Q句話說(shuō):

CPU 是一個(gè)強(qiáng)大而訓(xùn)練有素的斯巴達(dá)戰(zhàn)士,而 GPU 就像一支龐大的農(nóng)民大軍,但農(nóng)民大軍可以打敗斯巴達(dá)戰(zhàn)士,因?yàn)樗麄內(nèi)硕唷?/p>

讀取 TPU 上的乘加操作的權(quán)重

TPU 的運(yùn)作方式非常不同。它的 ALU 是直接相互連接的,不需要使用內(nèi)存。它們可以直接提供傳遞信息,從而大大減少延遲。

從上圖中可以看出,神經(jīng)網(wǎng)絡(luò)的所有權(quán)重都被加載到 ALU 中。完成此操作后,神經(jīng)網(wǎng)絡(luò)的輸入將加載到這些 ALU 中以執(zhí)行乘積累加操作。這個(gè)過(guò)程如下圖所示:

TPU 上的乘加操作

如上圖所示,神經(jīng)網(wǎng)絡(luò)的所有輸入并不是同時(shí)插入 ALU 的,而是從左到右逐步地插入。這樣做是為了防止內(nèi)存訪問(wèn),因?yàn)?ALU 的輸出將傳播到下一個(gè) ALU。這都是通過(guò)脈動(dòng)陣列 (systolic array) 的方式完成的,如下圖所示。

使用脈動(dòng)陣列執(zhí)行乘加操作

上圖中的每個(gè)灰色單元表示 TPU 中的一個(gè) ALU (其中包含一個(gè)權(quán)重)。在 ALU 中,乘加操作是通過(guò)將 ALU 從頂部得到的輸入乘以它的權(quán)重,然后將它與從左編得到的值相加。此操作的結(jié)果將傳播到右側(cè),繼續(xù)完成乘加操作。ALU 從頂部得到的輸入被傳播到底部,用于為神經(jīng)網(wǎng)絡(luò)層中的下一個(gè)神經(jīng)元執(zhí)行乘加操作。

在每一行的末尾,可以找到層中每個(gè)神經(jīng)元的乘加運(yùn)算的結(jié)果,而不需要在運(yùn)算之間使用內(nèi)存。

使用這種脈動(dòng)陣列顯著提高了 Edge TPU 的性能。

Edge TPU 推理速度超過(guò)其他處理器架構(gòu)

TPU 還有一個(gè)重要步驟是量化 (quantization)。由于谷歌的 Edge TPU 使用 8 位權(quán)重進(jìn)行計(jì)算,而通常使用 32 位權(quán)重,所以我們應(yīng)該將權(quán)重從 32 位轉(zhuǎn)換為 8 位。這個(gè)過(guò)程叫做量化。

量化基本上是將更精確的 32 位數(shù)字近似到 8 位數(shù)字。這個(gè)過(guò)程如下圖所示:

量化

四舍五入會(huì)降低精度。然而,神經(jīng)網(wǎng)絡(luò)具有很好的泛化能力 (例如 dropout),因此在使用量化時(shí)不會(huì)受到很大的影響,如下圖所示。

非量化模型與量化模型的精度

量化的優(yōu)勢(shì)更為顯著。它減少了計(jì)算量和內(nèi)存需求,從而提高了計(jì)算的能源效率。

Edge TPU 執(zhí)行推理的速度比任何其他處理器架構(gòu)都要快。它不僅速度更快,而且通過(guò)使用量化和更少的內(nèi)存操作,從而更加環(huán)保。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6231

    瀏覽量

    108204
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8505

    瀏覽量

    134677
  • TPU
    TPU
    +關(guān)注

    關(guān)注

    0

    文章

    154

    瀏覽量

    21215

原文標(biāo)題:一文讀懂:谷歌千元級(jí)Edge TPU為何如此之快?

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    TPU處理器的特性和工作原理

    張量處理單元(TPU,Tensor Processing Unit)是一種專門為深度學(xué)習(xí)應(yīng)用設(shè)計(jì)的硬件加速器。它的開(kāi)發(fā)源于對(duì)人工智能(AI)和機(jī)器學(xué)習(xí)應(yīng)用的需求,尤其是深度學(xué)習(xí)中的神經(jīng)網(wǎng)絡(luò)計(jì)算。
    的頭像 發(fā)表于 04-22 09:41 ?1500次閱讀
    <b class='flag-5'>TPU</b>處理器的特性和工作原理

    谷歌第七代TPU Ironwood深度解讀:AI推理時(shí)代的硬件革命

    谷歌第七代TPU Ironwood深度解讀:AI推理時(shí)代的硬件革命 Google 發(fā)布了 Ironwood,這是其第七代張量處理單元 (TPU),專為推理而設(shè)計(jì)。這款功能強(qiáng)大的 AI 加速器旨在處理
    的頭像 發(fā)表于 04-12 11:10 ?1852次閱讀
    <b class='flag-5'>谷歌</b>第七代<b class='flag-5'>TPU</b> Ironwood深度解讀:AI推理時(shí)代的硬件革命

    谷歌新一代 TPU 芯片 Ironwood:助力大規(guī)模思考與推理的 AI 模型新引擎?

    電子發(fā)燒友網(wǎng)報(bào)道(文 / 李彎彎)日前,谷歌 Cloud Next 大會(huì)上,隆重推出了最新一代 TPU AI 加速芯片 ——Ironwood。據(jù)悉,該芯片預(yù)計(jì)于今年晚些時(shí)候面向 Google
    的頭像 發(fā)表于 04-12 00:57 ?2465次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP
    的頭像 發(fā)表于 02-12 15:53 ?678次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過(guò)計(jì)算每層
    的頭像 發(fā)表于 02-12 15:18 ?778次閱讀

    BP神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問(wèn)題。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)圖像識(shí)別中應(yīng)
    的頭像 發(fā)表于 02-12 15:12 ?686次閱讀

    TPU編程競(jìng)賽系列|第九屆集創(chuàng)賽“算能杯”火熱報(bào)名中!

    第九屆全國(guó)大學(xué)生集成電路創(chuàng)新創(chuàng)業(yè)大賽(以下簡(jiǎn)稱“集創(chuàng)賽”)正式開(kāi)始報(bào)名。算能在處理器應(yīng)用方向特別設(shè)立了“TPU賦能的邊緣計(jì)算架構(gòu)優(yōu)化與創(chuàng)新應(yīng)用設(shè)計(jì)”賽題,誠(chéng)邀各校參賽隊(duì)伍充分發(fā)揮TPU的算力優(yōu)
    的頭像 發(fā)表于 02-06 13:41 ?1177次閱讀
    <b class='flag-5'>TPU</b>編程競(jìng)賽系列|第九屆集創(chuàng)賽“算能杯”火熱報(bào)名中!

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1218次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1887次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1140次閱讀

    NPU邊緣計(jì)算中的優(yōu)勢(shì)

    和GPU相比,NPU處理神經(jīng)網(wǎng)絡(luò)相關(guān)的計(jì)算任務(wù)時(shí),能夠提供更高的能效比和更快的處理速度。NPU通過(guò)優(yōu)化數(shù)據(jù)流和計(jì)算結(jié)構(gòu),使得神經(jīng)網(wǎng)絡(luò)的前向
    的頭像 發(fā)表于 11-15 09:13 ?1267次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)時(shí)間序列預(yù)測(cè)中的應(yīng)用

    時(shí)間序列預(yù)測(cè)是數(shù)據(jù)分析中的一個(gè)重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測(cè)未來(lái)值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)因其處理序列數(shù)據(jù)方面的優(yōu)勢(shì)而受到廣泛關(guān)注。 LSTM
    的頭像 發(fā)表于 11-13 09:54 ?2066次閱讀

    TPU v1到Trillium TPU,蘋果等科技公司使用谷歌TPU進(jìn)行AI計(jì)算

    ,訓(xùn)練尖端人工智能方面,大型科技公司正在尋找英偉達(dá)以外的替代品。 ? 不斷迭代的谷歌TPU 芯片 ? 隨著機(jī)器學(xué)習(xí)算法,特別是深度學(xué)習(xí)算法
    的頭像 發(fā)表于 07-31 01:08 ?3968次閱讀

    如何選擇神經(jīng)網(wǎng)絡(luò)種類

    人工智能和機(jī)器學(xué)習(xí)領(lǐng)域,選擇適合的神經(jīng)網(wǎng)絡(luò)種類是構(gòu)建高效、準(zhǔn)確模型的關(guān)鍵步驟。這一過(guò)程涉及對(duì)任務(wù)類型、數(shù)據(jù)特性、計(jì)算資源及模型性能要求等多方面的綜合考慮。
    的頭像 發(fā)表于 07-24 11:29 ?1207次閱讀

    FPGA深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    、低功耗等特點(diǎn),逐漸成為深度神經(jīng)網(wǎng)絡(luò)邊緣計(jì)算和設(shè)備端推理的重要硬件平臺(tái)。本文將詳細(xì)探討FPGA深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,包括其
    的頭像 發(fā)表于 07-24 10:42 ?1225次閱讀