99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Buck電路的損耗

jf_78858299 ? 來源:硬件十萬個為什么 ? 作者: 硬十 ? 2023-04-27 18:18 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

一、MOSFET功耗

Buck電路的損耗,主要發(fā)生在功率路徑上,也就是較大電流通過的器件上:MOSFET、電感、二極管(非同步控制器)。

根據(jù)Buck電路的幾個工作階段,我們分別討論MOSFET的損耗

圖片

第一個階段:上管打開的過程:

在開關(guān)過程中產(chǎn)生的損耗,MOSFET處于放大區(qū),下管關(guān)閉幾乎沒有電流。

圖片

在上管打開過程中,上管的電壓Vds不斷減小,電流Ids不斷增加。我們簡單地可以認(rèn)為是線性增減。此時輸出電流處于谷底,最小值。如果近似的看成是電流平均值即輸出電流值,則可以簡單計算如下:

圖片

如果需要考慮電流紋波,則計算公式如下:

圖片

第二個階段:上管完全導(dǎo)通、下管關(guān)閉。

圖片

上管MOSFET處于打開狀態(tài),上MOSFET等效于一個電阻即為MOSFET的導(dǎo)通阻抗Rds(on),Rds(on)上面流經(jīng)電流的損耗。此時,下管沒有電流,功耗全部集中在上管上。

打開的時間是由占空比決定的:上管打開的時間約等于T*D。

電流近似計算時,可以看作就是Buck電源的輸出電流。如果細(xì)算起來,就需要考慮在上管打開過程中,電流是逐步變大的,我們需要對這個電流增大的過程進(jìn)行積分計算,考慮到電流逐步變大的過程。

圖片

如果電流紋波足夠小,我們可以近似認(rèn)為上管打開過程電流沒變化。則這個計算非常容易,就是直接計算,就可以:

圖片

如果紋波帶來的影響不可忽略,則我們需要進(jìn)行積分運算。我們從開始開啟的電流進(jìn)行積分,即最小電流處,積分到最大電流處。此處運用牛頓-萊布尼茲公式,計算定積分。

圖片

圖片

第三個階段,上管關(guān)閉的過程

上管打開的過程和關(guān)閉的過程是類似的計算方法,此處只是電流為整個周期的最大值,因為經(jīng)歷了一個充電的過程,電流此時處于峰值。另外就是上管關(guān)閉的時間,會與上管打開的時間不一樣。我們計算公式如下:

圖片

第四個階段,此時上管已經(jīng)完全關(guān)閉,下管暫時還沒有打開,稱為死區(qū)時間

我們需要理解,任何控制器都需要控制避免上下管同時打開,如果出現(xiàn)這個狀態(tài),則非??赡軣?,因為相當(dāng)于通過上下管把輸入電源和GND進(jìn)行了短路。

為了避免這種狀態(tài),只好在上管關(guān)閉之后,等待一個時間段,再對下管進(jìn)行打開的操作。而在兩個MOSFET都關(guān)閉的狀態(tài),我們就稱為死區(qū)時間。這個時間,主要依賴下管的寄生二極管進(jìn)行續(xù)流,實現(xiàn)輸出電流的一個回路。

圖片

此時的功耗,就是下管的寄生二極管的功耗,也就是二極管的正向?qū)▔航党艘源藭r的電流。在開關(guān)開關(guān)的過程中,會有兩個階段經(jīng)歷死區(qū)時間,所以下管的死區(qū)時間功耗計算公式如下:

圖片

第五階段,下管導(dǎo)通

圖片

導(dǎo)通功耗,因為很顯然下管的功耗是在電流通過MOS的DS溝道之間的電阻(rDS(ON))產(chǎn)生的。下面公式可估算下MOS管的導(dǎo)通功耗。

下管的導(dǎo)通損耗,近似的可以看作是:

圖片

如果考慮紋波,可以用以下公式進(jìn)行計算:

圖片

1) 占空比 (高側(cè)FET,上管) = Vout/(Vin*效率)

2) 占空比 (低側(cè)FET,下管) = 1 – DC (高側(cè)FET)

FET 可能會集成到與控制器一樣的同一塊芯片中,從而實現(xiàn)一種最為簡單的解決方案。但是,為了提供高電流能力及(或)達(dá)到更高效率,F(xiàn)ET 需要始終為控制器的外部元件。這樣便可以實現(xiàn)最大散熱能力,因為它讓FET物理隔離于控制器,并且擁有最大的 FET 選擇靈活性。它的缺點是 FET 選擇過程更加復(fù)雜,原因是要考慮的因素有很多。

一個常見問題是“為什么不讓這種 10A FET 也用于我的 10A 設(shè)計呢?”答案是這種 10A 額定電流并非適用于所有設(shè)計。

選擇 FET 時需要考慮的因素包括額定電壓、環(huán)境溫度、開關(guān)頻率、控制器驅(qū)動能力和散熱組件面積 。關(guān)鍵問題是,如果功耗過高且散熱不足,則 FET 可能會過熱起火。我們可以利用封裝/散熱組件 ThetaJA 或者熱敏電阻、FET 功耗和環(huán)境溫度估算某個 FET 的結(jié)溫,具體方法如下:

3) Tj = ThetaJA * FET 功耗(PdissFET) + 環(huán)境溫度(Tambient)

它要求計算 FET 的功耗。這種功耗可以分成兩個主要部分:AC 和 DC 損耗。這些損耗可以通過下列方程式計算得到:

4) AC損耗: AC 功耗(PswAC) = ? * Vds * Ids * (trise + tfall)/Tsw

其中,Vds 為高側(cè) FET 的輸入電壓,Ids 為負(fù)載電流,trise 和 tfall 為 FET 的升時間和降時間,而Tsw 為控制器的開關(guān)時間(1/開關(guān)頻率)。

5) DC 損耗: PswDC = RdsOn * Iout * Iout * 占空比

其中,RdsOn 為 FET 的導(dǎo)通電阻,而 Iout 為降壓拓?fù)涞呢?fù)載電流。

其他損耗形成的原因還包括輸出寄生電容、門損耗,以及低側(cè) FET 空載時間期間導(dǎo)電帶來的體二極管損耗,但在本文中我們將主要討論 AC 和 DC 損耗。

開關(guān)電壓和電流均為非零時,AC 開關(guān)損耗出現(xiàn)在開關(guān)導(dǎo)通和關(guān)斷之間的過渡期間。圖 2 中高亮部分顯示了這種情況。根據(jù)方程式 4),降低這種損耗的一種方法是縮短開關(guān)的升時間和降時間。通過選擇一個更低柵極電荷的 FET,可以達(dá)到這個目標(biāo)。另一個因素是開關(guān)頻率。開關(guān)頻率越高,升降過渡區(qū)域所花費的開關(guān)時間百分比就越大。因此,更高頻率就意味著更大的AC開關(guān)損耗。所以,降低 AC 損耗的另一種方法便是降低開關(guān)頻率,但這要求更大且通常也更昂貴的電感來確保峰值開關(guān)電流不超出規(guī)范。

圖片

AC 損耗圖

圖片

開關(guān)頻率對 AC 損耗的影響

開關(guān)處在導(dǎo)通狀態(tài)下出現(xiàn) DC 損耗,其原因是 FET 的導(dǎo)通電阻。這是一種十分簡單的 I2R 損耗形成機(jī)制。但是,導(dǎo)通電阻會隨 FET 結(jié)溫而變化,這便使得這種情況更加復(fù)雜。所以,使用方程式 3)、4)和 5)準(zhǔn)確計算導(dǎo)通電阻時,就必須使用迭代方法,并要考慮到 FET 的溫升。降低 DC 損耗最簡單的一種方法是選擇一個低導(dǎo)通電阻的 FET。另外,DC 損耗大小同F(xiàn)ET 的百分比導(dǎo)通時間成正比例關(guān)系,其為高側(cè) FET控制器占空比加上 1 減去低側(cè) FET 占空比,如前所述。 我們可以知道,更長的導(dǎo)通時間就意味著更大的DC 開關(guān)損耗,因此,可以通過減小導(dǎo)通時間/FET 占空比來降低 DC 損耗。例如,如果使用了一個中間 DC 電壓軌,并且可以修改輸入電壓的情況下,設(shè)計人員或許就可以修改占空比。

圖片

DC 損耗圖

圖片

占空比對 DC 損耗的影響

盡管選擇一個低柵極電荷和低導(dǎo)通電阻的 FET 是一種簡單的解決方案,但是需要在這兩種參數(shù)之間做一些折中和平衡。低柵極電荷通常意味著更小的柵極面積/更少的并聯(lián)晶體管,以及由此帶來的高導(dǎo)通電阻。另一方面,使用更大/更多并聯(lián)晶體管一般會導(dǎo)致低導(dǎo)通電阻,從而產(chǎn)生更多的柵極電荷。這意味著,F(xiàn)ET 選擇必須平衡這兩種相互沖突的規(guī)范。另外,還必須考慮成本因素。

低占空比設(shè)計意味著高輸入電壓,對這些設(shè)計而言,高側(cè) FET 大多時候均為關(guān)斷,因此 DC 損耗較低。但是,高 FET 電壓帶來高 AC 損耗,所以可以選擇低柵極電荷的 FET,即使導(dǎo)通電阻較高。低側(cè) FET 大多數(shù)時候均為導(dǎo)通狀態(tài),但是 AC 損耗卻最小。這是因為,導(dǎo)通/關(guān)斷期間低側(cè) FET 的電壓因 FET 體二極管而非常的低。因此,需要選擇一個低導(dǎo)通電阻的 FET,并且柵極電荷可以很高。

圖片

低占空比設(shè)計的高側(cè)和低側(cè) FET 功耗

如果我們降低輸入電壓,則我們可以得到一個高占空比設(shè)計,其高側(cè) FET 大多數(shù)時候均為導(dǎo)通狀態(tài) ,如圖 8 所示。這種情況下,DC 損耗較高,要求低導(dǎo)通電阻。根據(jù)不同的輸入電壓,AC 損耗可能并不像低側(cè) FET 時那樣重要,但還是沒有低側(cè) FET 那樣低。因此,仍然要求適當(dāng)?shù)牡蜄艠O電荷。這要求在低導(dǎo)通電阻和低柵極電荷之間做出妥協(xié)。就低側(cè) FET 而言,導(dǎo)通時間最短,且 AC 損耗較低,因此我們可以按照價格或者體積而非導(dǎo)通電阻和柵極電荷原則,選擇正確的 FET。

圖片

高占空比設(shè)計的高側(cè)和低側(cè) FET 功耗

假設(shè)一個負(fù)載點 (POL) 穩(wěn)壓器時我們可以規(guī)定某個中間電壓軌的額定輸入電壓,那么最佳解決方案是什么呢,是高輸入電壓/低占空比,還是低輸入電壓/高占空比呢?使用不同輸入電壓對占空比進(jìn)行調(diào)制,同時查看 FET功耗情況。

高側(cè) FET 反應(yīng)曲線圖表明,占空比從 25% 增至 40% 時 AC 損耗明顯降低,而DC 損耗卻線性增加。因此,35% 左右的占空比,應(yīng)為選擇電容和導(dǎo)通電阻平衡FET的理想值。不斷降低輸入電壓并提高占空比,可以得到最低的AC 損耗和最高的 DC 損耗,就此而言,我們可以使用一個低導(dǎo)通電阻的 FET,并折中選擇高柵極電荷。如低側(cè) FET ,控制器占空比由低升高時 DC 損耗線性降低(低側(cè) FET 導(dǎo)通時間更短),高控制器占空比時損耗最小。整個電路板的AC 損耗都很低,因此任何情況下都應(yīng)選擇使用低導(dǎo)通電阻的 FET。

圖片

高側(cè)FET 損耗與占空比的關(guān)系

圖片

低側(cè) FET 損耗與控制器占空比的關(guān)系。

請注意:低側(cè) FET 占空比為 1-控制器占空比,因此低側(cè) FET 導(dǎo)通時間隨控制器占空比增加而縮短

我們將高側(cè)和低側(cè)損耗組合到一起時總效率的變化情況。我們可以看到,這種情況下,高占空比時組合 FET 損耗最低,并且效率最高。效率從 94.5% 升高至 96.5%。不幸的是,為了獲得低輸入電壓,我們必須降低中間電壓軌電源的電壓,使其占空比增加,原因是它通過一個固定輸入電源供電。因此,這樣可能會抵消在 POL 獲得的部分或者全部增益。另一種方法是不使用中間軌,而是直接從輸入電源到 POL 穩(wěn)壓器,目的是降低穩(wěn)壓器數(shù)。這時,占空比較低,我們必須小心地選擇 FET。

圖片

總損耗與效率和占空比的關(guān)系

二、電感的損耗

電感功耗阻性損耗

電感功耗包括線圈損耗和磁芯損耗兩個基本因素,線圈損耗歸結(jié)于線圈的直流電阻(DCR),磁芯損耗歸結(jié)于電感的磁特性。

DCR 定義為以下電阻公式:

圖片

式中,ρ 為線圈材料的電阻系數(shù),l 為線圈長度,A 為線圈橫截面積。

DCR 將隨著線圈長度的增大而增大,隨著線圈橫截面積的增大而減小。可以利用該原則判斷標(biāo)準(zhǔn)電感,確定所要求的不同電感值和尺寸。對一個固定的電感值,電感尺寸較小時,為了保持相同匝數(shù)必須減小線圈的橫截面積,因此導(dǎo)致DCR 增大;對于給定的電感尺寸,小電感值通常對應(yīng)于小的DCR,因為較少的線圈數(shù)減少了線圈長度,可以使用線徑較粗的導(dǎo)線。

已知DCR 和平均電感電流(具體取決于SMPS 拓?fù)?,電感的電阻損耗(PL(DCR))可以用下式估算:

PL(DCR) = IL(AVG)^2× DCR

這里,IL(AVG)是流過電感的平均直流電流。對于降壓轉(zhuǎn)換器,平均電感電流是直流輸出電流。盡管DCR的大小直接影響電感電阻的功耗,該功耗與電感電流的平方成正比,因此,減小DCR 是必要的。

另外,還需要注意的是:利用電感的平均電流計算PL(DCR) (如上述公式)時,得到的結(jié)果略低于實際損耗,因為實際電感電流為三角波。本文前面介紹的MOSFET 傳導(dǎo)損耗計算中,利用對電感電流的波形進(jìn)行積分可以獲得更準(zhǔn)確的結(jié)果。更準(zhǔn)確。當(dāng)然也更復(fù)雜的計算公式如下:

PL(DCR) = (IP^3 - IV^3)/3 × DCR

式中IP 和IV 為電感電流波形的峰值和谷值。

磁芯損耗

磁芯損耗并不像傳導(dǎo)損耗那樣容易估算,很難估測。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。SMPS 中,盡管平均直流電流流過電感,由于通過電感的開關(guān)電壓的變化產(chǎn)生的紋波電流導(dǎo)致磁芯周期性的磁通變化。

磁芯材料對磁芯損耗的影響很大。SMPS 電源中普遍使用的電感是鐵粉磁芯,鐵鎳鉬磁粉芯(MPP)的損耗最低,鐵粉芯成本最低,但磁芯損耗較大。

磁芯損耗可以通過計算磁芯磁通密度(B)的最大變化量估算,然后查看電感或鐵芯制造商提供的磁通密度和磁芯損耗(和頻率)圖表。峰值磁通密度可以通過幾種方式計算,公式可以在電感數(shù)據(jù)資料中的磁芯損耗曲線中找到。

相應(yīng)地,如果磁芯面積和線圈數(shù)已知,可利用下式估計峰值磁通:

圖片

這里,B 是峰值磁通密度(高斯),L 是線圈電感(亨),ΔI 是電感紋波電流峰峰值(安培),A 是磁芯橫截面積(cm2),N 是線圈匝數(shù)。

磁芯損耗主要由三種構(gòu)成,磁滯損耗、渦流損耗和剩余損耗。

磁滯損耗如何理解呢?

磁滯損耗源于每個交流周期中磁芯偶極子的重新排列所消耗的功率,可以將其看作磁場極性變化時偶極子相互摩擦產(chǎn)生的“摩擦”損耗,正比于頻率和磁通密度。

磁芯在外磁場的作用下,材料中的一部分與外磁場方向相差不大的磁疇發(fā)生了‘彈性’轉(zhuǎn)動,這就是說當(dāng)外磁場去掉時,磁疇仍能恢復(fù)原來的方向;而另一部分磁疇要克服磁疇壁的摩擦發(fā)生剛性轉(zhuǎn)動,即當(dāng)外磁場去除時,磁疇仍保持磁化方向。因此磁化時,送到磁場的能量包含兩部分:前者轉(zhuǎn)為勢能,即去掉外磁化電流時,磁場能量可以返回電路;而后者變?yōu)榭朔Σ潦勾判景l(fā)熱消耗掉,這就是磁滯損耗。

圖片

上圖為典型的磁滯曲線,從前面磁滯損耗的理解來看。剩磁Br越小,那么磁疇的剛性轉(zhuǎn)動越少,損耗就越小?;蛘哒f磁滯損耗正比于磁滯回線包圍的面積。

渦流損耗則是磁芯中的時變磁通量引入的。由法拉第定律可知:交變磁通產(chǎn)生交變電壓。因此,這個交變電壓會產(chǎn)生局部電流,在磁芯電阻上產(chǎn)生I2R 損耗。

如下圖,根據(jù)電磁感應(yīng)定律,通電線圈產(chǎn)生磁場B,如果電流是交變的,那么產(chǎn)生的磁場B也是變化的。變化的磁場在磁芯上面產(chǎn)生電場e,并且這個電場是環(huán)形電場。因為磁芯材料的電阻率一般不是無限大的,會有一定的電阻值,那么感生出的環(huán)形電場會使磁芯中形成環(huán)形電流。電流流過電阻,就會發(fā)熱,產(chǎn)生損耗,這就是渦流損耗。

圖片

剩余損耗

剩余損耗的來源,是因為磁芯在磁化過程中,磁化狀態(tài)并不是隨磁化強(qiáng)度的變化立即變化到它的最終狀態(tài),而是需要一個過程,需要一定的時間,這便是引起剩余損耗的原因。

剩余損耗是由于磁化弛豫效應(yīng)或磁性滯后效應(yīng)引起的損耗。所謂弛豫是指在磁化或反磁化的過程中,磁化狀態(tài)并不是隨磁化強(qiáng)度的變化而立即變化到它的最終狀態(tài),而是需要一個過程,這個‘時間效應(yīng)’便是引起剩余損耗的原因。它主要是在高頻1MHz以上一些馳豫損耗和旋磁共振等,在開關(guān)電源幾百KHz的電力電子場合剩余損耗比例非常低,可以近似忽略。

選擇合適的磁芯,要考慮不同的B-H曲線和頻率特性,因為B-H曲線決定了電感的高頻損耗,飽和曲線及電感量。因為渦流一方面引起電阻損耗,導(dǎo)致磁材料發(fā)熱,并引起激磁電流加大,另一方面減少磁芯有效導(dǎo)磁面積。所以盡量選擇電阻率高的磁性材料或采用碾軋成帶料的形式以減少渦流損耗。因此,鉑科新材料NPH-L適用于更高頻率、高功率器件的低損耗金屬粉芯。如圖所示:

圖片

磁芯損耗是磁芯材料內(nèi)交替磁場引致的結(jié)果。某一種材料所產(chǎn)生的損耗,是操作頻率與總磁通擺幅(ΔB)的函數(shù),從而降低了有效傳導(dǎo)損耗。磁芯損耗是由磁芯材料的磁滯、渦流和剩余損耗引起的。所以,磁芯損耗是磁滯損耗、渦流損耗和剩磁損耗的總和。公式如下:

圖片

在一個世紀(jì)以前Steinmetz 總結(jié)出一個實用于工程計算磁芯損耗的經(jīng)驗公式:

圖片

這個公式表明單位體積的損耗Pv 是重復(fù)磁化頻率和磁通密度的指數(shù)函數(shù)。Cm ,α 和β 是經(jīng)驗參數(shù),兩個指數(shù)都可以不為整數(shù),一般的1<α<3 和 2<β<3。對于不同的材質(zhì),生產(chǎn)廠家一般會給出其相應(yīng)的一套參數(shù),但公式和參數(shù)僅僅適用于正弦的磁化情況,這是該經(jīng)驗公式應(yīng)用于開關(guān)電源領(lǐng)域的一個主要缺陷。

圖片

有些廠家給出的計算公式,主要計算磁滯損耗,剩余損耗和渦流損耗都忽略了。如上圖所示:

根據(jù)磁芯廠家提供的計算公式計算磁損。

圖片

借助 Steinmetz 模型計算磁損在工程上的應(yīng)用十分廣泛,然而該模型的參數(shù)隨頻率變化,也就是說用來反映頻率和最大磁感應(yīng)強(qiáng)度與磁損關(guān)系的冪指數(shù)α 和β 的擬合值在不同頻率時是不同的,同時溫度對磁芯損耗的影響也很大。

圖片

飛利浦公司的3F3 材料單位體積損耗和溫度的關(guān)系。既然磁芯損耗隨溫度的變化而變化,那么計算公式就應(yīng)該考慮溫度的影響。但式(2)中沒有明顯體現(xiàn)溫度影響的參數(shù)。為此,一些產(chǎn)商在Steinmetz 經(jīng)驗公式的基礎(chǔ)上進(jìn)行改進(jìn),把溫度和頻率的影響包括在一個更加通用的公式中,比如下式就是飛利浦公司提出的計算正弦波下的單位體積的磁芯損耗公式(W/m3)。

圖片

其中:

式(3)中參數(shù)Cm、α、β 反映了頻率對磁芯損耗的影響。而參數(shù)ct0、ct1、ct2,和T 體現(xiàn)了溫度的影響,溫度的總體影響用參數(shù)CT 來表示。表1 為飛利浦公司提供的材料的相應(yīng)參數(shù)。應(yīng)用式(3)和(4) ,Steinmetz 經(jīng)驗公式(2)可以用來計算正弦波勵磁時,不同頻率和溫度下磁芯材料的單位體積損耗。

表1 飛利浦公司常用磁材料的單位體積損耗(W/m^3)的參數(shù)列表

圖片

電感磁芯產(chǎn)生損耗的原因: 貼片電感磁芯的損耗主要來源于磁芯損耗和線圈損耗兩個方面,而且這兩個方面的損耗量的大小又需要根據(jù)其不同電路模式來進(jìn)行判斷。其中,磁芯損耗主要是因為磁芯材料內(nèi)交替磁場而產(chǎn)生的,它所產(chǎn)生的損耗是操作頻率與總磁通擺幅(ΔB)的函數(shù),會大大降低了有效傳導(dǎo)損耗。線圈損耗則是因為磁性能量變化所造成的能源耗損,它會在當(dāng)功率電感電流下降時,降低磁場的強(qiáng)度。

電感磁芯降低損耗的方法:

1、電感磁芯中產(chǎn)生的磁芯損耗會隨電感磁芯損耗上升而下降的容許銅線損耗,而且還會帶來相同的電感磁芯材料通量激增。因此當(dāng)開關(guān)頻率上升至 500 kHz 以上,電感磁芯損耗和繞組交流損耗就可以極大地減少電感中的容許直流電流。

2、電感磁芯在線圈中的損耗主要表現(xiàn)在銅線損耗上,因此想要降低銅線損耗,必須要在電感磁芯損耗上升時降低,一直持續(xù)到各損耗均相等。最好的情況就是在高頻率下?lián)p耗穩(wěn)定保持相等,并允許從磁結(jié)構(gòu)獲得最大輸出電流。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 二極管
    +關(guān)注

    關(guān)注

    148

    文章

    10073

    瀏覽量

    171147
  • MOSFET
    +關(guān)注

    關(guān)注

    150

    文章

    8485

    瀏覽量

    219659
  • buck電路
    +關(guān)注

    關(guān)注

    28

    文章

    487

    瀏覽量

    47511
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    Buck電路:DCDC電路中的損耗是如何產(chǎn)生的

    對于大多數(shù) MPS Buck 穩(wěn)壓器,高側(cè)MOSFET、高側(cè)MOSFET驅(qū)動器、低側(cè)MOSFET、低側(cè)MOSFET驅(qū)動器(僅用于同步 Buck 變換器)、 VCC Regulator、邏輯和控制電路集成在一個芯片中。
    發(fā)表于 03-07 11:22 ?4769次閱讀
    <b class='flag-5'>Buck</b><b class='flag-5'>電路</b>:DCDC<b class='flag-5'>電路</b>中的<b class='flag-5'>損耗</b>是如何產(chǎn)生的

    闡述BUCK電路損耗產(chǎn)生及其估算算法

    PART1:前言本文以一個12V-2.5V/2A的DC-DC電源為例,闡述BUCK電路損耗產(chǎn)生及其估算算法。先做以下幾點聲明:1、開關(guān)電源的主功率開關(guān)管的工作區(qū)域:開區(qū)和關(guān)區(qū),實際上是線性區(qū)
    發(fā)表于 07-27 07:55

    【原創(chuàng)】同步buck電路講解

    體積。同時解決了因ESL引起的問題,所以現(xiàn)在有很多的MOS管的體二極管的壓降是非常低,可以直接應(yīng)用于同步整流,不需要去單獨并聯(lián)二極管,如圖三所示同步buck電路里面Q1與Qs的驅(qū)動是不能有共通的,所以
    發(fā)表于 07-28 09:36

    Buck開關(guān)電源損耗如何估算?

    Buck開關(guān)電源損耗如何估算?
    發(fā)表于 10-11 08:18

    BUCK型開關(guān)電源中的損耗

    BUCK型開關(guān)電源中,如果沒有損耗,那效率就是100%,但這是不可能的,BUCK型開關(guān)電源中主要的損耗是導(dǎo)通損耗和交流開關(guān)
    發(fā)表于 10-29 08:08

    分享一下Buck電路的電感要求

      Buck電路是常見的應(yīng)用電路,Buck電路的電感要求有超低功率或者超高功率開關(guān)電源|穩(wěn)壓器的電感,并不象一般開關(guān)電源那樣容易選擇。下面北
    發(fā)表于 04-06 16:59

    降壓式變換電路Buck電路)詳解

    降壓式變換電路Buck電路)詳解BUCK電路基本結(jié)構(gòu),本站還有更多Buck
    發(fā)表于 04-14 22:50 ?6w次閱讀
    降壓式變換<b class='flag-5'>電路</b>(<b class='flag-5'>Buck</b><b class='flag-5'>電路</b>)詳解

    buck電路是什么意思_buck電路簡介

    BUCK電路的定義 BUCK電路是一種降壓斬波器,降壓變換器輸出電壓平均值Uo總是小于輸出電壓UD。 通常電感中的電流是否連續(xù),取決于開關(guān)頻率、濾波電感L和電容C的數(shù)值。
    發(fā)表于 11-29 15:13 ?16.1w次閱讀
    <b class='flag-5'>buck</b><b class='flag-5'>電路</b>是什么意思_<b class='flag-5'>buck</b><b class='flag-5'>電路</b>簡介

    開關(guān)電源損耗分析 以Buck為例

    PART1:前言本文以一個12V-2.5V/2A的DC-DC電源為例,闡述BUCK電路損耗產(chǎn)生及其估算算法。先做以下幾點聲明:1、開關(guān)電源的主功率開關(guān)管的工作區(qū)域:開區(qū)和關(guān)區(qū),實際上是線性區(qū)
    發(fā)表于 10-21 19:36 ?15次下載
    開關(guān)電源<b class='flag-5'>損耗</b>分析  以<b class='flag-5'>Buck</b>為例

    BUCK型開關(guān)電源中的損耗與效率的計算

    BUCK型開關(guān)電源中,如果沒有損耗,那效率就是100%,但這是不可能的,BUCK型開關(guān)電源中主要的損耗是導(dǎo)通損耗和交流開關(guān)
    發(fā)表于 10-22 15:05 ?26次下載
    <b class='flag-5'>BUCK</b>型開關(guān)電源中的<b class='flag-5'>損耗</b>與效率的計算

    傳統(tǒng)的buck電路是電感電流控制嗎?

    輸出電壓。本文將詳細(xì)介紹Buck電路的工作原理、開關(guān)頻率、損耗和應(yīng)用。 一、Buck電路的工作原理 Bu
    的頭像 發(fā)表于 09-12 15:20 ?1490次閱讀

    為什么buck電路中開關(guān)器多用mosfet而不用bjt?

    電路的工作原理和效率。 開關(guān)器的兩種主要類型是MOSFET和BJT。然而,在Buck電路中,MOSFET通常更受歡迎,而BJT則較少使用。這主要歸因于以下幾個原因: 1. 低開關(guān)損耗
    的頭像 發(fā)表于 09-12 15:26 ?1608次閱讀

    同步buck電路的mos自舉驅(qū)動可以降低mos的開關(guān)損耗嗎?

    同步buck電路的mos自舉驅(qū)動可以降低mos的開關(guān)損耗嗎? 同步buck電路的MOS自舉驅(qū)動可以降低MOS的開關(guān)
    的頭像 發(fā)表于 10-25 11:45 ?1371次閱讀

    buck電路的拓?fù)浣Y(jié)構(gòu) buck電路臨界條件怎么來的

    Buck電路作為一種常見的降壓電路,其拓?fù)浣Y(jié)構(gòu)十分重要。本文將詳細(xì)介紹Buck電路的拓?fù)浣Y(jié)構(gòu),并深入討論了
    的頭像 發(fā)表于 02-14 17:31 ?3945次閱讀

    buck電路效率優(yōu)化方法

    1. 引言 Buck電路作為一種基本的電源轉(zhuǎn)換器,其效率直接影響到整個系統(tǒng)的能效。在設(shè)計和應(yīng)用Buck電路時,工程師需要考慮多種因素,包括開關(guān)損耗
    的頭像 發(fā)表于 11-04 17:54 ?5390次閱讀