盡管硅是電子產(chǎn)品中使用最廣泛的半導(dǎo)體,但最近的研究表明它有一些局限性,特別是在高功率應(yīng)用中。帶隙是基于半導(dǎo)體的電路的一個(gè)相關(guān)因素,因?yàn)楦邘对诟邷?、電壓和頻率下的操作方面具有優(yōu)勢(shì)。雖然硅的帶隙為 1.12 eV,但碳化硅的帶隙值是 3.2 eV 的 3 倍,從而在更高的開(kāi)關(guān)頻率以及更小的整體占位面積下實(shí)現(xiàn)更好的性能和效率。
SiC MOSFET具有顯著的特性和單極傳導(dǎo)機(jī)制,可減小尺寸并提高開(kāi)關(guān)性能。此外,當(dāng)具有相同的電流和電壓額定值時(shí),SIC MOSFET 的尺寸可以比 Si 對(duì)應(yīng)物更小,正如 Huang 的品質(zhì)因數(shù)1中所推測(cè)的那樣。由于尺寸更小,整體寄生電容更小,這使得 SiC MOSFET 能夠?qū)崿F(xiàn)高開(kāi)關(guān)速度和低導(dǎo)通電阻。因此,基于 SiC 的轉(zhuǎn)換器在混合動(dòng)力/電動(dòng)汽車、太陽(yáng)能逆變器和不間斷電源中具有巨大的應(yīng)用潛力。
先前的研究表明,SiC 芯片尺寸的顯著減小僅考慮有源區(qū)域。由于位于有源區(qū)邊界的邊緣電場(chǎng),封閉有源區(qū)并有助于成功實(shí)現(xiàn)近乎理想的雪崩擊穿的終止區(qū)不能按比例縮放。一組研究人員開(kāi)展了分析從端接區(qū)域引入的寄生電容以及它如何影響 SiC MOSFET 的開(kāi)關(guān)損耗的工作。2該研究得到了國(guó)家自然科學(xué)基金的部分支持,部分得到了寬帶隙半導(dǎo)體電力電子器件國(guó)家重點(diǎn)實(shí)驗(yàn)室的支持。
分析終端區(qū)域中的 SiC MOSFET
在題為“端接區(qū)域?qū)?SiC MOSFET 的開(kāi)關(guān)損耗的影響”的論文中,研究人員分析了端接區(qū)域?qū)纳娙莸挠绊?。?jiǎn)單來(lái)說(shuō),寄生電容是電子元件或電路的各部分之間由于彼此接近而存在的一種不可避免但不受歡迎的電容。
圖 1:半電池節(jié)距和端接區(qū)域的橫截面圖
輸入電容、輸出電容和反向傳輸電容都取決于 SiC MOSFET 的所有三個(gè)端子之間的電容。由于柵極總線和源極之間存在物理重疊,因此柵極下方的氧化層比柵極氧化層厚。由于柵極和漏極以及柵極和源極端之間沒(méi)有重疊,它們對(duì)總電容的貢獻(xiàn)很小。因此,漏源端電容由有源區(qū)和終端區(qū)的等效電容組成。
該團(tuán)隊(duì)使用 TCAD Sentaurus 演示了 SiC MOSFET 開(kāi)啟和關(guān)閉事件期間寄生電容的工作原理。TCAD Sentaurus 是一種先進(jìn)的多維模擬器,能夠模擬硅基器件的電學(xué)、熱學(xué)和光學(xué)特性,用于開(kāi)發(fā)和優(yōu)化半導(dǎo)體工藝技術(shù)。器件兩端的電壓 (V ds ) 和流經(jīng)器件的電流 (I ds ) 重疊會(huì)導(dǎo)致開(kāi)關(guān)損耗。為了說(shuō)明 SiC MOSFET 內(nèi)部的開(kāi)關(guān)過(guò)程,通道電流 (I ch ) 通過(guò)柵極通道引入。
圖 2:考慮端接區(qū)域的寄生電容電路圖
在導(dǎo)通過(guò)程的米勒間隔期間,柵漏電容 (C gd ) 和有源區(qū)電容 (C acti ) 由于來(lái)自終端引入的電容的放電電流 (I term ) 的電阻流動(dòng)而放電區(qū)(C term)通過(guò)位于有源區(qū)的柵極溝道。在此區(qū)間內(nèi)流過(guò)柵極溝道的耗散電流或溝道電流 (I ch ) 是流過(guò)終端區(qū)的電流 (I term ) 與有源區(qū)電容 (I acti ) 和漏極的放電電流的組合源電流 (I ds )。
而對(duì)于關(guān)斷過(guò)程的米勒間隔,一部分漏源電流 (I ds ) 開(kāi)始對(duì)引入到有源區(qū)和終端區(qū)的電容 (C acti和 C term ) 充電,而不是流過(guò)柵極溝道),如下圖所示。這里,耗散溝道電流 (I ch ) 不包括 C term和 C acti的電流(即I ch = I ds – I acti – I term)。
圖 3:開(kāi)啟(上)和關(guān)斷(下)工藝的米勒平臺(tái)選擇期間 SiC MOSFET 端接區(qū)域的示意圖和等效電路
SiC MOSFET 的開(kāi)關(guān)損耗建模
在終端區(qū)域的物理分析過(guò)程中,流過(guò) SiC MOSFET 柵極溝道的溝道電流 (I ch ) 是展示開(kāi)關(guān)損耗但不可測(cè)量的漏源電流 (I ds ) 的基本電流。因此,考慮終端區(qū)域的開(kāi)啟和關(guān)閉損耗表達(dá)式為:
將上述關(guān)斷和開(kāi)通損耗公式組合后,定義如下公式:
等式 3 和 4 表示在開(kāi)啟和關(guān)閉米勒過(guò)程期間可測(cè)量 I ds的開(kāi)關(guān)損耗貢獻(xiàn)。等式 5 和 6 描述了 C acti和 C term的充電和放電。對(duì)于給定的器件,存儲(chǔ)在有源區(qū)和終端區(qū)的寄生電容中的能量固定在相同的阻斷電壓下,但與 I ds無(wú)關(guān)。
結(jié)果
圖 4:SiC MOSFET 分離的開(kāi)關(guān)電路圖
如圖 4 所示,建立了一個(gè)雙脈沖測(cè)試,其中 SiC MOSFET 在有源區(qū)和終端區(qū)分開(kāi),以檢查開(kāi)關(guān)損耗的組成。SiC MOSFET 的額定電流為 1、3 和 6 A,定義為V ds = 3 V 和V gs = 20 V。使用 TCAD Sentaurus 仿真,計(jì)算的開(kāi)關(guān)損耗擊穿為 1-、3-、下圖顯示了 800、1,000 和 1,200 V 以下的 6-A SiC MOSFET。
圖 5:不同 MOSFET 的開(kāi)關(guān)損耗細(xì)分
開(kāi)關(guān)損耗分為 E ON (I ds )、E acti、E term和 E OFF (I ch )。E ON (I ds )、E acti和 E term的值是可比較的,而 E OFF (I ch ) 在各種阻斷電壓和電流額定值下變得非常低。隨著用于更高額定電流的有源區(qū)面積的增加,E acti增加了總開(kāi)關(guān)損耗的比例。如果使用相對(duì)較弱的柵極驅(qū)動(dòng)器,則 E ON (I ds ) 和 E OFF (Ich ) 會(huì)更大。另一方面,對(duì)于特定的 MOSFET ,E acti和 E term是固定的。對(duì)于 SiC MOSFET 的 E OFF,很少有電流流過(guò)柵極溝道,產(chǎn)生很少的焦耳熱,但幾乎所有電流都將 C acti和 C項(xiàng)充電為位移電流。這導(dǎo)致較低的 E OFF (I ch ) 值??梢员硎救缦拢?/p>
其中 I g(OFF)是關(guān)斷過(guò)程中柵極回路的放電電流,表明關(guān)斷持續(xù)時(shí)間比 C acti和 C term快得多。
結(jié)論
使用 TCAD Sentaurus 和考慮了端接區(qū)域影響的開(kāi)關(guān)損耗模型模擬了對(duì) SiC MOSFET 端接區(qū)域的物理洞察。經(jīng)證實(shí),終端區(qū)域?qū)﹂_(kāi)關(guān)損耗的影響不容忽視,尤其是對(duì)于低電流額定值的 SiC MOSFET。開(kāi)通損耗的重要部分之一是 E term和 E acti,這是一種固有損耗,甚至高于常用的電測(cè)量估計(jì)。
審核編輯:湯梓紅
-
MOSFET
+關(guān)注
關(guān)注
150文章
8608瀏覽量
220424 -
開(kāi)關(guān)損耗
+關(guān)注
關(guān)注
1文章
66瀏覽量
13711
發(fā)布評(píng)論請(qǐng)先 登錄
PFC MOSFET的開(kāi)關(guān)損耗測(cè)試方案
使用Cauer網(wǎng)絡(luò)仿真熱行為與對(duì)開(kāi)關(guān)損耗影響的評(píng)估

功率MOSFET的開(kāi)關(guān)損耗:關(guān)斷損耗
全SiC功率模塊的開(kāi)關(guān)損耗
【干貨】MOSFET開(kāi)關(guān)損耗分析與計(jì)算
如何更加深入理解MOSFET開(kāi)關(guān)損耗?
開(kāi)關(guān)損耗包括哪幾種
集成高側(cè)MOSFET中的開(kāi)關(guān)損耗分析
MOSFET開(kāi)關(guān)損耗分析
基于CMM下開(kāi)關(guān)損耗和反激開(kāi)關(guān)損耗分析以及公式計(jì)算

如何準(zhǔn)確的測(cè)量開(kāi)關(guān)損耗
基于航跡數(shù)據(jù)的機(jī)場(chǎng)終端區(qū)進(jìn)場(chǎng)效率分析
開(kāi)關(guān)損耗原理分析

全SiC功率模塊的開(kāi)關(guān)損耗

評(píng)論