99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計算機視覺方向簡介之視覺慣性里程計

新機器視覺 ? 來源:計算機視覺life ? 作者:計算機視覺life ? 2021-04-07 16:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

VIO-SLAM

Visual-Inertial Odometry(VIO)即視覺慣性里程計,有時也叫視覺慣性系統(tǒng)(VINS,visual-inertial system),是融合相機和IMU數(shù)據(jù)實現(xiàn)SLAM的算法,根據(jù)融合框架的不同又分為松耦合和緊耦合。

056d0c30-9592-11eb-8b86-12bb97331649.jpg

其中VO(visual odometry)指僅視覺的里程計,T表示位置和姿態(tài)。松耦合中視覺運動估計和慣導(dǎo)運動估計系統(tǒng)是兩個獨立的模塊,將每個模塊的輸出結(jié)果進(jìn)行融合。

058202ca-9592-11eb-8b86-12bb97331649.jpg

緊耦合則是使用兩個傳感器的原始數(shù)據(jù)共同估計一組變量,傳感器噪聲也是相互影響的。緊耦合算法比較復(fù)雜,但充分利用了傳感器數(shù)據(jù),可以實現(xiàn)更好的效果,是目前研究的重點。

相機和IMU的缺點及互補性

058adb98-9592-11eb-8b86-12bb97331649.jpg

相機和IMU融合有很好的互補性。首先通過將IMU 估計的位姿序列和相機估計的位姿序列對齊可以估計出相機軌跡的真實尺度,而且IMU 可以很好地預(yù)測出圖像幀的位姿以及上一時刻特征點在下幀圖像的位置,提高特征跟蹤算法匹配速度和應(yīng)對快速旋轉(zhuǎn)的算法魯棒性,最后IMU 中加速度計提供的重力向量可以將估計的位置轉(zhuǎn)為實際導(dǎo)航需要的世界坐標(biāo)系中。

隨著MEMS器件的快速發(fā)展,智能手機等移動終端可以便捷地獲取IMU數(shù)據(jù)和攝像頭拍攝數(shù)據(jù),融合IMU 和視覺信息的VINS 算法可以很大程度地提高單目SLAM 算法性能,是一種低成本高性能的導(dǎo)航方案,在機器人、AR/VR 領(lǐng)域得到了很大的關(guān)注。

算法流程

05dd9c98-9592-11eb-8b86-12bb97331649.jpg

整個流程圖可以分解為五部分:數(shù)據(jù)預(yù)處理、初始化、局部非線性優(yōu)化、回環(huán)檢測和全局優(yōu)化。

各個模塊的主要作用是:

圖像和IMU數(shù)據(jù)預(yù)處理:對于圖像,提取特征點,利用KLT金字塔進(jìn)行光流跟蹤,為后面僅視覺初始化求解相機位姿做準(zhǔn)備。對于IMU,將IMU數(shù)據(jù)進(jìn)行預(yù)積分,得到當(dāng)前時刻的位姿、速度、旋轉(zhuǎn)角,同時計算在后端優(yōu)化中將要用到的相鄰幀間的預(yù)積分增量,及預(yù)積分的協(xié)方差矩陣和雅可比矩陣。

初始化:初始化中,首先進(jìn)行僅視覺的初始化,解算出相機的相對位姿;然后再與IMU預(yù)積分進(jìn)行對齊求解初始化參數(shù)。

局部非線性優(yōu)化:對應(yīng)流程圖中滑動窗口的視覺慣導(dǎo)非線性優(yōu)化,即將視覺約束、IMU約束放在一個大目標(biāo)函數(shù)中進(jìn)行優(yōu)化,這里的局部優(yōu)化也就是只優(yōu)化當(dāng)前幀及之前的n幀的窗口中的變量,局部非線性優(yōu)化輸出較為精確的位姿。

回環(huán)檢測:回環(huán)檢測是將前面檢測的圖像關(guān)鍵幀保存起來,當(dāng)再回到原來經(jīng)過的同一個地方,通過特征點的匹配關(guān)系,判斷是否已經(jīng)來過這里。前面提到的關(guān)鍵幀就是篩選出來的能夠記下但又避免冗余的相機幀(關(guān)鍵幀的選擇標(biāo)準(zhǔn)是當(dāng)前幀和上一幀之間的位移超過一定閾值或匹配的特征點數(shù)小于一定閾值)。

全局優(yōu)化:全局優(yōu)化是在發(fā)生回環(huán)檢測時,利用相機約束和IMU約束,再加上回環(huán)檢測的約束,進(jìn)行非線性優(yōu)化。全局優(yōu)化在局部優(yōu)化的基礎(chǔ)上進(jìn)行,輸出更為精確的位姿。

算法核心

局部優(yōu)化會用到邊緣化,僅用局部優(yōu)化精度低,全局一致性差,但是速度快,IMU利用率高;僅用全局優(yōu)化精度高,全局一致性好,但是速度慢,IMU利用率低;兩者側(cè)重點不同,所以將兩者結(jié)合,可以優(yōu)勢互補。

因此小編設(shè)計實驗采用局部優(yōu)化和全局優(yōu)化融合的方法。

061ed280-9592-11eb-8b86-12bb97331649.jpg

局部優(yōu)化是滑動窗口內(nèi)相機幀的優(yōu)化,全局優(yōu)化是所有關(guān)鍵幀的優(yōu)化,兩者結(jié)合會產(chǎn)生邊緣幀沖突的問題,因為局部優(yōu)化會固定滑動窗口邊緣幀,而全局優(yōu)化發(fā)生回環(huán)檢測的時候則會固定回環(huán)起點的幀。這里的改進(jìn)就是采用相對的位姿邊緣化,即邊緣化以后的點是相對于它上一時刻關(guān)鍵幀的位姿而不是全局的位姿,這樣局部優(yōu)化邊緣化相對位姿(關(guān)鍵幀),扔給全局優(yōu)化整體優(yōu)化。局部邊緣化和全局邊緣化的結(jié)合部分是關(guān)鍵幀。

相對邊緣化可以具體解釋為,相對邊緣化的參考坐標(biāo)系不再是世界坐標(biāo)系,而是與當(dāng)前幀共視且距離最近的一個關(guān)鍵幀的相機系(設(shè)為第k0幀)。視覺約束可以表示為:

0662de8a-9592-11eb-8b86-12bb97331649.png

區(qū)別于絕對邊緣化的視覺約束

0689c1b2-9592-11eb-8b86-12bb97331649.png

實驗結(jié)果與總結(jié)

實驗一:無人機數(shù)據(jù)集上的實驗

數(shù)據(jù)集采用了歐盟機器人挑戰(zhàn)數(shù)據(jù)集(EuRoC)。EuRoC 數(shù)據(jù)集使用 Asctec Firefly 六旋翼飛行器在倉庫和房間采集數(shù)據(jù),數(shù)據(jù)集中包括以20Hz采集的相機圖像和200Hz的IMU數(shù)據(jù),以及運動真值。

實驗結(jié)果如下:

06a1ae44-9592-11eb-8b86-12bb97331649.jpg

實驗結(jié)果可見,融合優(yōu)化的軌跡和真實軌跡很接近,而僅使用局部優(yōu)化的定位結(jié)果誤差不斷累積。

實驗二:車載數(shù)據(jù)上的實驗

該車載數(shù)據(jù)是在北京市朝陽區(qū)某小區(qū)采集的,在數(shù)據(jù)采集階段,車輛以5km/h 到 30km/h 的速度行駛,一共行駛2271m。

實驗結(jié)果如下:

06c4430a-9592-11eb-8b86-12bb97331649.jpg

實驗結(jié)果可見,融合優(yōu)化后的定位結(jié)果明顯優(yōu)于僅使用局部優(yōu)化的定位結(jié)果,融合優(yōu)化中誤差得到及時修正。

參考文獻(xiàn)

J. Delmerico. A Benchmark Comparison of Monocular Visual-Inertial OdometryAlgorithms for Flying Robots. 2018. ICRA

T. Qin. VINS-Mono: A robust and versatile monocular visual-inertial state estimator. arXivpreprint arXiv: 1708.03852, 2017.

N. Trawny. Indirect KalmanFilter for 3D Attitude Estimation. 2005.

Sola. Quaternion kinematics for error-state kalmanfilter. 2017.

K. Eckenhoff. Decoupled, Consistent Node Removal and Edge sparsificationfor graph-based SLAM. 2016.

G. Sibley. Sliding window filter with application to planetary landing. 2010.

S. Leutenegger. Keyframe-Based Visual-Inertial SLAM Using Nonlinear Optimization. 2015.

H. Liu. ICE-BA: Incremental, consistenand efficient bundle adjustment for visual-inertial slam. 2018. CVPR.

H. Liu. Robust keyframe-based dense SLAM with an RGB-D camera. 2017.

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2567

    文章

    53027

    瀏覽量

    767827
  • 噪聲
    +關(guān)注

    關(guān)注

    13

    文章

    1140

    瀏覽量

    48168
  • MEMS器件
    +關(guān)注

    關(guān)注

    2

    文章

    48

    瀏覽量

    13171
  • 緊耦合
    +關(guān)注

    關(guān)注

    0

    文章

    4

    瀏覽量

    991

原文標(biāo)題:計算機視覺方向簡介 | 視覺慣性里程計(VIO)

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎(chǔ)算法的應(yīng)用

    結(jié)合IMU(慣性測量單元)進(jìn)行多傳感器融合。 三、總結(jié)與展望 技術(shù)融合趨勢 機器人視覺與SLAM的結(jié)合(如視覺慣性里程計VIO)是當(dāng)前研
    發(fā)表于 05-03 19:41

    一種新型激光雷達(dá)慣性視覺里程計系統(tǒng)介紹

    針對具有挑戰(zhàn)性的光照條件和惡劣環(huán)境,本文提出了LIR-LIVO,這是一種輕量級且穩(wěn)健的激光雷達(dá)-慣性-視覺里程計系統(tǒng)。通過采用諸如利用深度與激光雷達(dá)點云關(guān)聯(lián)實現(xiàn)特征的均勻深度分布等先進(jìn)技術(shù),以及利用
    的頭像 發(fā)表于 04-28 11:18 ?370次閱讀
    一種新型激光雷達(dá)<b class='flag-5'>慣性</b><b class='flag-5'>視覺</b><b class='flag-5'>里程計</b>系統(tǒng)介紹

    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對計算機視覺的支持

    計算機視覺的支持,擴大了當(dāng)前對音頻、雷達(dá)和其他時間序列信號數(shù)據(jù)的支持范圍。在增加這項支持后,該平臺將能夠用于開發(fā)低功耗、低內(nèi)存的邊緣AI視覺模型。這將給諸多應(yīng)用領(lǐng)域的機器學(xué)習(xí)開發(fā)人員帶來極大的便利,例如工廠可以借此實現(xiàn)對零件的
    的頭像 發(fā)表于 03-11 15:11 ?397次閱讀
    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>的支持

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負(fù)載的廣泛增長,推動了對計算機視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實世界的視覺信息,并可應(yīng)用于人臉識別、照片分類、濾鏡處理及增強現(xiàn)實
    的頭像 發(fā)表于 02-24 10:15 ?575次閱讀

    AR和VR中的計算機視覺

    ):計算機視覺引領(lǐng)混合現(xiàn)實體驗增強現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1589次閱讀
    AR和VR中的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>

    用于任意排列多相機的通用視覺里程計系統(tǒng)

    如何讓多相機視覺SLAM系統(tǒng)更易于部署且對環(huán)境更具魯棒性?本文提出了一種適用于任意排列多相機的通用視覺里程計系統(tǒng)。在KITTI-360和MultiCamData數(shù)據(jù)集上驗證了該方法對于任意放置相機的魯棒性。與其他立體和多相機
    的頭像 發(fā)表于 12-13 11:22 ?779次閱讀
    用于任意排列多相機的通用<b class='flag-5'>視覺</b><b class='flag-5'>里程計</b>系統(tǒng)

    基于旋轉(zhuǎn)平移解耦框架的視覺慣性初始化方法

    精確和魯棒的初始化對于視覺慣性里程計(VIO)至關(guān)重要,因為不良的初始化會嚴(yán)重降低姿態(tài)精度。
    的頭像 發(fā)表于 11-01 10:16 ?979次閱讀
    基于旋轉(zhuǎn)平移解耦框架的<b class='flag-5'>視覺</b><b class='flag-5'>慣性</b>初始化方法

    【小白入門必看】一文讀懂深度學(xué)習(xí)計算機視覺技術(shù)及學(xué)習(xí)路線

    一、什么是計算機視覺?計算機視覺,其實就是教機器怎么像我們?nèi)艘粯樱脭z像頭看看周圍的世界,然后理解它。比如說,它能認(rèn)出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉(zhuǎn)換
    的頭像 發(fā)表于 10-31 17:00 ?1257次閱讀
    【小白入門必看】一文讀懂深度學(xué)習(xí)<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術(shù)及學(xué)習(xí)路線

    ARMxy嵌入式計算機在機器視覺中的卓越表現(xiàn)

    嵌入式視覺是指在嵌入式系統(tǒng)中使用計算機視覺技術(shù),與經(jīng)常所說的機器視覺系統(tǒng)的區(qū)別在于嵌入式視覺系統(tǒng)是多合一的設(shè)備,簡單來說嵌入式
    的頭像 發(fā)表于 10-10 14:47 ?554次閱讀
    ARMxy嵌入式<b class='flag-5'>計算機</b>在機器<b class='flag-5'>視覺</b>中的卓越表現(xiàn)

    初創(chuàng)公司SEA.AI利用NVIDIA邊緣AI和計算機視覺技術(shù)變革航海安全系統(tǒng)

    總部位于奧地利林茨的初創(chuàng)公司正在利用 NVIDIA 邊緣 AI 和計算機視覺技術(shù)變革航海安全系統(tǒng),讓每一次出海變得更安全。
    的頭像 發(fā)表于 09-09 09:32 ?924次閱讀

    計算機視覺有哪些優(yōu)缺點

    計算機視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?2066次閱讀

    圖像處理器與計算機視覺有什么關(guān)系和區(qū)別

    圖像處理器與計算機視覺是兩個在圖像處理領(lǐng)域緊密相連但又有所區(qū)別的概念。它們之間的關(guān)系和區(qū)別可以從多個維度進(jìn)行探討。
    的頭像 發(fā)表于 08-14 09:36 ?1054次閱讀

    計算機視覺中的圖像融合

    在許多計算機視覺應(yīng)用中(例如機器人運動和醫(yī)學(xué)成像),需要將多個圖像的相關(guān)信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準(zhǔn)確性和數(shù)據(jù)質(zhì)量。多視圖融合可以提高圖像分辨率,并恢復(fù)場景的三維表示
    的頭像 發(fā)表于 08-01 08:28 ?1148次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>中的圖像融合

    地平線科研論文入選國際計算機視覺頂會ECCV 2024

    近日,地平線兩篇論文入選國際計算機視覺頂會ECCV 2024,自動駕駛算法技術(shù)再有新突破。
    的頭像 發(fā)表于 07-27 11:10 ?1472次閱讀
    地平線科研論文入選國際<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>頂會ECCV 2024

    計算機視覺技術(shù)的AI算法模型

    計算機視覺技術(shù)作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現(xiàn)這一目標(biāo),計算機視覺技術(shù)依賴于
    的頭像 發(fā)表于 07-24 12:46 ?1826次閱讀