前言:臻驅(qū)科技(上海)有限公司(以下簡稱“臻驅(qū)科技”)是一家以研發(fā)、生產(chǎn)和銷售新能源車動力總成及其功率半導(dǎo)體模塊為核心業(yè)務(wù)的高科技公司。2019年底,臻驅(qū)科技與日本羅姆半導(dǎo)體公司成立了聯(lián)合實驗室,并簽訂戰(zhàn)略合作協(xié)議,合作內(nèi)容包含了基于某些客戶的需求,進行基于羅姆碳化硅芯片的功率半導(dǎo)體模塊,及對應(yīng)電機控制器的開發(fā)。本文即介紹臻驅(qū)對碳化硅功率模塊的開發(fā)、測試及系統(tǒng)評估。
Introduction
碳化硅功率半導(dǎo)體近年來在能源轉(zhuǎn)換應(yīng)用中正在成為一個熱門的話題:由于材料屬性,使得它具有比硅基半導(dǎo)體器件更高的最大結(jié)溫、更小的損耗,以及更小的材料熱阻系數(shù)等。
因此,很多人宣稱,當碳化硅功率器件應(yīng)用于能源轉(zhuǎn)換后,變頻器系統(tǒng)將有更高的功率密度、更小的體積、更高的允許工作溫度,以及更低的損耗,從而給應(yīng)用系統(tǒng)帶來更大優(yōu)勢。
臻驅(qū)科技計劃將碳化硅芯片封裝至功率模塊,并應(yīng)用于新能源車的電機驅(qū)動器中(以下簡稱“電控”),用于取代其現(xiàn)有的硅基IGBT功率模塊(峰值功率約為150 kW)。
進行開發(fā)之前,應(yīng)用者需要進行評估,哪些碳化硅的特性能給主驅(qū)應(yīng)用帶來最大的價值。例如,對于此類DC-AC的拓撲結(jié)構(gòu),碳化硅技術(shù)的導(dǎo)入對于電控體積的減小并沒有顯著的作用,因為電控的體積主要取決于其各子部件的封裝技術(shù)而功率模塊只占其中很小的百分比;另一些人宣稱可以利用碳化硅更高工作結(jié)溫的優(yōu)勢,少安裝芯片數(shù)量并使其工作在高溫,從而降低成本。也許,此特性適用于如地下鉆探等環(huán)境溫度很高的應(yīng)用,但對于新能源車而言,是否有必要將結(jié)溫推高而犧牲效率(注:碳化硅在高溫下的損耗會顯著增加),以及是否因為節(jié)省了芯片數(shù)量就能節(jié)省系統(tǒng)成本,是需要被質(zhì)疑的。
在臻驅(qū)看來,碳化硅技術(shù)應(yīng)用于主驅(qū)電控的主要系統(tǒng)優(yōu)勢,是在于效率的提升,以及峰值輸出功率的增加。前者可以提升續(xù)航里程或減少電池安裝數(shù)量,后者可以給整車帶來更大的百公里加速度。臻驅(qū)第一款開發(fā)的是750V的碳化硅模塊,針對A級及以上的乘用車型;第二款是1200V碳化硅模塊,應(yīng)用于800V系統(tǒng)的乘用車或商用車。在臻驅(qū)開發(fā)的碳化硅模塊中,臻驅(qū)采用的是羅姆最新的第四代750V及1200V芯片,以1200V芯片為例,其綜合性能較上一代產(chǎn)品有顯著提升,見表1。
本文介紹了該項目的研發(fā)過程:包含系統(tǒng)性能評估(top-down flow),用于選擇芯片并聯(lián)數(shù)量;碳化硅模塊的本體設(shè)計,包括封裝形式、電磁、熱、結(jié)構(gòu)、可制造性等;模塊性能測試,對標某知名IGBT功率模塊;根據(jù)模塊的標定結(jié)果迭代系統(tǒng)性能評估,包括最大輸出功率、高效區(qū)并輔以臺架實測結(jié)果,并展開其對續(xù)航里程影響的分析?;谝陨辖Y(jié)果,本文最后將總結(jié)一下關(guān)于碳化硅模塊應(yīng)用于主驅(qū)設(shè)計的方法論。
系統(tǒng)分析
根據(jù)羅姆提供的第四代SiC芯片規(guī)格書,作者將其相關(guān)參數(shù)導(dǎo)入至臻驅(qū)的系統(tǒng)分析工具——ScanTool中。ScanTool是一種時域-頻域混合的穩(wěn)態(tài)仿真工具,主要用于電力電子系統(tǒng)的前期方案設(shè)計,可用于計算系統(tǒng)在不同軟硬件配置下的功率、效率、輸出波形失真、母線電容的電壓紋波及電流應(yīng)力等。ScanTool的計算原理是將時域激勵波形轉(zhuǎn)成頻域的頻譜,同時將負載用頻域矩陣的形式表述,兩者相乘從而獲得頻域的響應(yīng),再對該頻域響應(yīng)逆變換成時域波形。通過此種方式,該工具的輸出波形具有極高的穩(wěn)態(tài)精度,同時又避免了一般的時域仿真工具從初始狀態(tài)到最終穩(wěn)態(tài)的等待時間,使其仿真時間可以從每個仿真數(shù)十分鐘縮減至1-2秒。因此ScanTool特別適合動輒需要仿真成百上千種軟硬件設(shè)計組合的高自由度的電力電子系統(tǒng)的前期設(shè)計。一個圖像化的原理介紹見圖1。
一般而言,當人們設(shè)計一款基于IGBT芯片的功率模塊時,芯片的種類及并聯(lián)數(shù)量的選擇依據(jù)大多為芯片的結(jié)溫(或者說是最大結(jié)溫時能輸出的峰值功率)。此項目采用碳化硅芯片,單個面積小、適合多芯片并聯(lián),但其價格較IGBT高出不少。另一方面,碳化硅屬于單極性器件,因此碳化硅芯片的并聯(lián)數(shù)量越多,其總導(dǎo)通損耗越低,并可因此提高電控的效率。所以,選擇芯片并聯(lián)數(shù)量時,除了最高結(jié)溫限制了最大輸出功率,還必須考慮它對于系統(tǒng)層面的優(yōu)勢——如之前所提到過的,即必須考慮綜合的效率提升,尤其是如在NEDC、WLTC、CLTC等循環(huán)路況下的續(xù)航里程的提升,并結(jié)合財務(wù)回報模型進行綜合分析。一種簡化的財務(wù)模型可以包含使用碳化硅的模塊(較IGBT模塊)導(dǎo)致的成本差異、電池安裝成本減少,以及后續(xù)的充電使用成本減少。前兩者為初始投資支出(CAPEX),后者為運營支出(OPEX),最終可以折算出獲得財務(wù)回報的時間點。根據(jù)車型與用戶使用頻次,該盈虧平衡點可以在1-4年之間。由于該系統(tǒng)層面測算模型涉及到很多變量的假設(shè),本文不再贅述。
經(jīng)過一系列的系統(tǒng)分析,我們驗證了芯片并聯(lián)數(shù)量過多,不會對續(xù)航里程進一步提升有過多幫助,而只能提升該車的最大加速度;芯片數(shù)量過少,貌似模塊成本降低,但也可能失去效率/經(jīng)濟優(yōu)勢——尤其是考慮碳化硅芯片的正溫度系數(shù)后。
基于此結(jié)果,作者對選擇的芯片數(shù)量依據(jù)財務(wù)模型進行了優(yōu)化,既能避免無謂的多安裝的芯片而導(dǎo)致的成本增加,也避免了芯片并聯(lián)數(shù)量過少而導(dǎo)致的經(jīng)濟優(yōu)勢不再。同時,臻驅(qū)碳化硅模塊也引入了平臺化設(shè)計的理念,即當客戶對于整車加速性有更高要求的時候(例如對于部分高端車型),模塊內(nèi)部可以根據(jù)客戶需求而并聯(lián)更多的芯片,從而提高最大瞬時輸出功率,給整車用戶提供更大的推背體驗。
模塊本體設(shè)計
當芯片選型與并聯(lián)數(shù)量確定后,我們進入功率半導(dǎo)體模塊的本體設(shè)計階段,它一般包含電磁、熱、結(jié)構(gòu)與可制造性等內(nèi)容。需要注意的是,碳化硅的開關(guān)速度比硅基的IGBT高很多,所以,一些在IGBT模塊中通常并不嚴苛的指標,會在碳化硅模塊的設(shè)計中變得十分關(guān)鍵。這些指標包括了各并聯(lián)碳化硅芯片之間的開關(guān)時刻同步性、芯片的瞬態(tài)電流電壓應(yīng)力的均衡性、功率鏈路對于門極的干擾等。其中,前兩個指標體現(xiàn)在模塊外特性上,它們會決定該模塊的極限電壓與電流輸出能力;功率鏈路對門極的干擾,是器件在開通關(guān)斷的瞬間,將電磁能量通過空間耦合到控制鏈路上,其造成的后果可能是導(dǎo)致門極瞬態(tài)電壓應(yīng)力過大導(dǎo)致門極老化加快、壽命減少,嚴重的可導(dǎo)致功率的誤觸發(fā),造成模塊及系統(tǒng)的損壞。
此外,在臻驅(qū)之前的碳化硅功率模塊的設(shè)計項目中,發(fā)現(xiàn)碳化硅模塊中較為明顯的振蕩現(xiàn)象,它是由功率模塊的漏感與碳化硅芯片的結(jié)電容構(gòu)成的LC諧振,通常其頻率在數(shù)十兆赫茲。該振蕩會影響到電控系統(tǒng)的電磁兼容表現(xiàn),并降低碳化硅模塊的效率優(yōu)勢,甚至在某些極限工況下,此諧振會進一步惡化,使電壓電流幅值超越器件的安全工作區(qū)域(SOA)。為了解決這個問題,臻驅(qū)開發(fā)了一系列設(shè)計輔助工具,并基于此優(yōu)化了模塊本體設(shè)計,最終將該問題基本解決。圖2是兩個輸出波形的對比??梢钥闯觯谙嗤墓r下,優(yōu)化后的模塊設(shè)計不再有明顯的振蕩現(xiàn)象。
最終,臻驅(qū)設(shè)計的碳化硅功率模塊經(jīng)過多次迭代,將模塊內(nèi)部多芯片之間的瞬態(tài)應(yīng)力不平衡度降低到了10%以下。根據(jù)團隊內(nèi)部進行的競品對標評估,認為僅此性能就已經(jīng)做到了業(yè)內(nèi)的頂尖水平。同時,功率鏈路對于門極的電壓毛刺干擾也大大減小;模塊開關(guān)時刻的高頻振蕩問題也得到了較好的解決。
碳化硅模塊性能對標測試
功率模塊的測試包含性能與可靠性測試,而性能測試可以分為用于導(dǎo)通損耗評估的靜態(tài)測試與用于開關(guān)損耗評估的動態(tài)測試。后者通常的實現(xiàn)方法是一種稱為“雙脈沖測試”的方法,它需要對于被測器件施加不同的電壓、電流、器件溫度,甚至不同的門極驅(qū)動電阻,以進行全面測試評估。一個完整的測試DoE表格(Design of Experiment)可包含數(shù)千個工作點??紤]到接著還需要進行大量的測試數(shù)據(jù)的后處理工作,功率器件的動態(tài)測試顯然是一個費時費力的任務(wù)。因此,很多情況下,用戶不得不選擇降低測試點密度,即刪減DoE表格的長度來縮短測試時間。
臻驅(qū)科技開發(fā)出了一套高精度、高測試速度的功率模塊動態(tài)測試標定平臺,它基本可以做到“一鍵”完成數(shù)千個工作點的全自動測試,并自動化后做數(shù)據(jù)的后處理,并半自動地生成標準化的模塊測試報告。使用者所需要做的,只是對測試前期硬件進行配置、生成科學的DoE表格,以及對最終的測試報告添加主觀評估的內(nèi)容。對一個有3000多個測試點的模塊標定任務(wù),相較于一般的手動/半手動測試系統(tǒng),該自動化標定平臺可以將工作從2個月壓縮到2天,且包含了數(shù)據(jù)后處理及報告生成。圖3介紹了該測試平臺的核心功能。
本項目中,動態(tài)性能的參考對象為一知名的IGBT功率模塊。測試結(jié)果顯示,臻驅(qū)開發(fā)的碳化硅功率模塊在動態(tài)性能上全面超越了參考的IGBT功率模塊,這包括了開通損耗、關(guān)斷損耗及體二極管的反向恢復(fù)損耗。同時,碳化硅模塊在極端溫度下也沒有出現(xiàn)明顯的振蕩。
審核編輯:符乾江
-
IC設(shè)計
+關(guān)注
關(guān)注
38文章
1360瀏覽量
105770 -
功率模塊
+關(guān)注
關(guān)注
11文章
538瀏覽量
45969 -
碳化硅
+關(guān)注
關(guān)注
25文章
3066瀏覽量
50478
發(fā)布評論請先 登錄
EAB450M12XM3全碳化硅半橋功率模塊CREE
基于SiC碳化硅功率模塊的高效、高可靠PCS解決方案

碳化硅功率器件有哪些特點
博世碳化硅功率模塊生產(chǎn)基地落成
SiC碳化硅MOSFET功率器件雙脈沖測試方法介紹

產(chǎn)SiC碳化硅MOSFET功率模塊在工商業(yè)儲能變流器PCS中的應(yīng)用
什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?
碳化硅功率器件的工作原理和應(yīng)用

碳化硅功率器件的優(yōu)勢和應(yīng)用領(lǐng)域

Wolfspeed推出創(chuàng)新碳化硅模塊
碳化硅功率器件的原理簡述

碳化硅功率器件的優(yōu)點和應(yīng)用

碳化硅功率器件有哪些優(yōu)勢

碳化硅功率器件的優(yōu)勢和分類

評論