99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

BERT是一種用于自然語言處理的先進(jìn)神經(jīng)網(wǎng)絡(luò)方法

倩倩 ? 來源:互聯(lián)網(wǎng)分析沙龍 ? 作者:互聯(lián)網(wǎng)分析沙龍 ? 2020-12-13 10:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在一篇新論文中,F(xiàn)rankle及其同事發(fā)現(xiàn)了潛伏在BERT中的此類子網(wǎng),BERT是一種用于自然語言處理(NLP)的先進(jìn)神經(jīng)網(wǎng)絡(luò)方法。作為人工智能的一個分支,NLP旨在通過預(yù)測文本生成或在線聊天機(jī)器人等應(yīng)用程序來解密和分析人類語言。在計算方面,BERT體積龐大,通常需要大多數(shù)用戶無法獲得的超級計算能力。從而可能使更多用戶在智能手機(jī)上開發(fā)有效的NLP工具。

弗蘭克勒說:“我們正在達(dá)到必須使這些模型更精簡,更高效的地步?!彼a(bǔ)充說,這一進(jìn)步有一天可能會“減少NLP的準(zhǔn)入門檻”。

麻省理工學(xué)院計算機(jī)科學(xué)與人工智能實(shí)驗(yàn)室的邁克爾·卡賓小組的博士生Frankle是該研究的共同作者,該研究將于下個月在神經(jīng)信息處理系統(tǒng)會議上發(fā)表。德克薩斯大學(xué)奧斯汀分校的陳天龍是該論文的主要作者,其中包括得克薩斯州A&M的合作者Wang Zhangyang Wang,以及所有MIT-IBM Watson AI Lab的常石宇,劉思佳和張揚(yáng)。

您今天可能已經(jīng)與BERT網(wǎng)絡(luò)進(jìn)行了互動。這是Google搜索引擎的基礎(chǔ)技術(shù)之一,自Google于2018年發(fā)布BERT以來,它一直引起研究人員的興奮。BERT是一種創(chuàng)建神經(jīng)網(wǎng)絡(luò)的方法-使用分層節(jié)點(diǎn)或“神經(jīng)元”的算法來學(xué)習(xí)執(zhí)行通過培訓(xùn)大量實(shí)例來完成一項任務(wù)。

BERT是通過反復(fù)嘗試填寫寫作段落中遺漏的單詞來進(jìn)行訓(xùn)練的,它的功能在于此初始訓(xùn)練數(shù)據(jù)集的龐大大小。然后,用戶可以將BERT的神經(jīng)網(wǎng)絡(luò)微調(diào)至特定任務(wù),例如構(gòu)建客戶服務(wù)聊天機(jī)器人。但是爭吵的BERT需要大量的處理能力。

弗蘭克爾說:“如今,標(biāo)準(zhǔn)的BERT模型-園林品種-具有3.4億個參數(shù),”他補(bǔ)充說,這個數(shù)字可以達(dá)到10億。對如此龐大的網(wǎng)絡(luò)進(jìn)行微調(diào)可能需要一臺超級計算機(jī)?!斑@簡直太貴了。這遠(yuǎn)遠(yuǎn)超出了您或我的計算能力。”

為了削減計算成本,Chen和他的同事試圖找出隱藏在BERT中的較小模型。他們通過迭代修剪整個BERT網(wǎng)絡(luò)的參數(shù)進(jìn)行了實(shí)驗(yàn),然后將新子網(wǎng)的性能與原始BERT模型的性能進(jìn)行了比較。他們對一系列NLP任務(wù)進(jìn)行了此比較,從回答問題到填充句子中的空白詞。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?1189次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)<b class='flag-5'>方法</b>

    自然語言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的個核心領(lǐng)域,它使計算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測或決策。自然語言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)闄C(jī)器學(xué)習(xí)提供了一種強(qiáng)大的工具,
    的頭像 發(fā)表于 12-05 15:21 ?1985次閱讀

    ASR與自然語言處理的結(jié)合

    。以下是對ASR與自然語言處理結(jié)合的分析: 、ASR與NLP的基本概念 ASR(自動語音識別) : 專注于將人類的語音轉(zhuǎn)換為文字。 涉及從聲音信號中提取特征,并將這些特征映射到文本。 NLP(
    的頭像 發(fā)表于 11-18 15:19 ?1025次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的個重要分支,它致力于使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1870次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)自然語言處理中的應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域的個重要分支,它致力于使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,循環(huán)神經(jīng)網(wǎng)絡(luò)(RN
    的頭像 發(fā)表于 11-15 09:41 ?814次閱讀

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    情感分析是自然語言處理(NLP)領(lǐng)域的項重要任務(wù),旨在識別和提取文本中的主觀信息,如情感傾向、情感強(qiáng)度等。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,基于LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)的情感分析
    的頭像 發(fā)表于 11-13 10:15 ?1278次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    、數(shù)據(jù)收集與清洗 數(shù)據(jù)收集 : 根據(jù)LSTM神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景(如時間序列預(yù)測、自然語言處理等),收集相關(guān)的時間序列數(shù)據(jù)或文本數(shù)據(jù)。 數(shù)據(jù)可以來自數(shù)據(jù)庫、日志文件、傳感器讀數(shù)、用
    的頭像 發(fā)表于 11-13 10:08 ?2118次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    神經(jīng)網(wǎng)絡(luò)(RNN) RNN的基本結(jié)構(gòu) RNN是一種特殊的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù)。在RNN中,每個時間步的輸入都會通過個循環(huán)結(jié)構(gòu)傳遞到
    的頭像 發(fā)表于 11-13 09:58 ?1213次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    長短期記憶(Long Short-Term Memory, LSTM)神經(jīng)網(wǎng)絡(luò)一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),由Hochreiter和Schmidhuber在1997年提出。LSTM因其在
    的頭像 發(fā)表于 11-13 09:57 ?4829次閱讀

    使用LSTM神經(jīng)網(wǎng)絡(luò)處理自然語言處理任務(wù)

    自然語言處理(NLP)是人工智能領(lǐng)域的個重要分支,它旨在使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 09:56 ?1161次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言
    的頭像 發(fā)表于 11-13 09:53 ?1586次閱讀

    自然語言處理的未來發(fā)展趨勢

    隨著技術(shù)的進(jìn)步,自然語言處理(NLP)已經(jīng)成為人工智能領(lǐng)域的個重要分支。NLP的目標(biāo)是使計算機(jī)能夠理解、解釋和生成人類語言,這不僅涉及到語言
    的頭像 發(fā)表于 11-11 10:37 ?1726次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的區(qū)別

    在人工智能的快速發(fā)展中,自然語言處理(NLP)和機(jī)器學(xué)習(xí)(ML)成為了兩個核心的研究領(lǐng)域。它們都致力于解決復(fù)雜的問題,但側(cè)重點(diǎn)和應(yīng)用場景有所不同。 1. 自然語言處理(NLP) 定義:
    的頭像 發(fā)表于 11-11 10:35 ?1547次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    講解,包括偏置、權(quán)重、激活函數(shù);三要素包括網(wǎng)絡(luò)結(jié)構(gòu)、損失函數(shù)和優(yōu)化方法。章節(jié)最后總結(jié)了神經(jīng)網(wǎng)絡(luò)參數(shù)學(xué)習(xí)的關(guān)鍵步驟。 1.4章節(jié)描述了自然語言處理
    發(fā)表于 07-25 14:33