99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

科學(xué)家將開發(fā)深度學(xué)習(xí)框架,以將機(jī)器學(xué)習(xí)集成到神經(jīng)影像研究中

如意 ? 來源: 愛云資訊 ? 作者: 愛云資訊 ? 2020-08-17 17:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

佐治亞州立大學(xué)的研究人員與麻省理工學(xué)院(MIT)和麻省總醫(yī)院(MGH)的同事們通過推進(jìn)獲得了美國國立衛(wèi)生研究院腦研究的 250萬美元贈款創(chuàng)新性神經(jīng)技術(shù)(BRAIN) 研究計劃,旨在徹底改變科學(xué)家對人腦的理解。

該團(tuán)隊將開發(fā)Nobrainer(一種用于3D圖像處理的開源深度學(xué)習(xí)框架),以將機(jī)器學(xué)習(xí)集成到神經(jīng)影像研究和臨床應(yīng)用中。

佐治亞州立大學(xué)計算機(jī)科學(xué)副教授,研究資助機(jī)構(gòu)負(fù)責(zé)人謝爾蓋·普利斯(Sergey Plis)表示:“人工智能和深度學(xué)習(xí)的進(jìn)步可以幫助研究人員從大腦掃描中獲取更多見解,同時減少處理數(shù)據(jù)所需的時間。” ?!袄纾覀兛梢粤私庥嘘P(guān)精神疾病或衰老如何影響大腦結(jié)構(gòu)的細(xì)節(jié)?!?/p>

能夠闡明這類復(fù)雜模式的模型非常耗費數(shù)據(jù),而組裝龐大的大腦數(shù)據(jù)集具有挑戰(zhàn)性,特別是對于小型研究小組而言。

“當(dāng)Google想要創(chuàng)建一個聊天機(jī)器人時,他們可以使用每次互聯(lián)網(wǎng)搜索中的數(shù)據(jù)來訓(xùn)練它,”同時也是神經(jīng)影像和數(shù)據(jù)科學(xué)轉(zhuǎn)化研究中心機(jī)器學(xué)習(xí)核心主管的Plis說 ?!暗?,對于腦成像儀來說,障礙可能太高。收集成千上萬的大腦掃描以及訓(xùn)練所需的硬件非常昂貴,并且您必須匿名化數(shù)據(jù)才能解決隱私問題?!?/p>

該團(tuán)隊由 麻省理工學(xué)院 的 Satrajit Ghosh ,MGH的Bruce Fischl和Plis領(lǐng)導(dǎo)。他們計劃創(chuàng)建深度神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)已經(jīng)接受了來自65,000多人的腦部掃描的培訓(xùn)。他們將把該技術(shù)作為一組廣泛使用的工具和神經(jīng)科學(xué)家的現(xiàn)成模型進(jìn)行傳播。工具和產(chǎn)生的模型將被標(biāo)準(zhǔn)化,以確??茖W(xué)家們可以獲得可比的結(jié)果并更輕松地共享它們,而無需擔(dān)心患者的機(jī)密性。

團(tuán)隊正在開發(fā)一種獨特的功能,其中的模型可以批判他們所知道的信息,量化自己分析中的不確定性程度,并報告可能存在錯誤的地方。這可以幫助科學(xué)家確定何時信任該模型以及何時需要收集更多數(shù)據(jù)。隨著越來越多的研究人員使用模型,提出新的問題或?qū)⒛P驼{(diào)整為新的數(shù)據(jù)集,這些工具將繼續(xù)學(xué)習(xí),變得更加準(zhǔn)確。

普利斯說:“模型傳播得越遠(yuǎn),就像土豆一樣,變得更好?!?“當(dāng)您正在研究以不可預(yù)測的方式影響大腦的事物(例如中風(fēng))時,您需要大量數(shù)據(jù),因為患者預(yù)后會存在很多差異。借助熱土豆學(xué)習(xí)方式,該模型逐漸吸收了這種可變性,并且在進(jìn)行預(yù)測時變得更好?!?/p>

該工具的另一個主要優(yōu)點是該工具具有比可用模型快得多的數(shù)據(jù)處理能力。研究團(tuán)隊對Nobrainer進(jìn)行了培訓(xùn),使其做出與Freesurfer相同的預(yù)測,F(xiàn)reesurfer是MGH開發(fā)的同類最佳的MRI分析工具。初步研究表明,這項技術(shù)的性能優(yōu)于Freesurfer,在幾分鐘到幾小時內(nèi)進(jìn)行了一些相同的計算。該團(tuán)隊計劃使用他們的工具來自動化和加速Freesurfer平臺的其他部分以及其他類型的神經(jīng)成像分析。減少執(zhí)行復(fù)雜分析所需的時間,可以加快關(guān)于大腦的科學(xué)和臨床發(fā)現(xiàn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    2024年諾貝爾物理學(xué)獎為何要頒給機(jī)器學(xué)習(xí)?

    (Geoffrey Hinton),表彰他們在使用人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方面的基礎(chǔ)性發(fā)現(xiàn)和發(fā)明。 ? 作為在科學(xué)界具有舉足輕重的地位和深遠(yuǎn)影響的諾貝爾獎,它不僅是對
    的頭像 發(fā)表于 10-10 00:11 ?4428次閱讀

    任正非說 AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來呢?

    ,TensorFlow、PyTorch用于構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)。Python為例,通過編寫簡單的程序來處理數(shù)據(jù),如讀取數(shù)據(jù)集、進(jìn)行數(shù)據(jù)清洗和預(yù)處理,這是進(jìn)入AI領(lǐng)域的基本技能。 學(xué)習(xí)機(jī)器學(xué)習(xí)
    發(fā)表于 07-08 17:44

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度
    的頭像 發(fā)表于 04-02 18:21 ?899次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)
    的頭像 發(fā)表于 02-12 15:15 ?871次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    設(shè)備和智能傳感器)上,這些設(shè)備通常具有有限的計算能力、存儲空間和功耗。本文您介紹嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性,以及常見的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 01-25 17:05 ?672次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件<b class='flag-5'>開發(fā)</b>環(huán)境

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強(qiáng)大的工具,目前也非常
    的頭像 發(fā)表于 12-30 09:16 ?1198次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    Arm成功Arm KleidiAI軟件庫集成騰訊自研的Angel 機(jī)器學(xué)習(xí)框架

    Arm 與騰訊攜手合作,成功 Arm KleidiAI 軟件庫集成騰訊自研的 Angel 機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-24 15:33 ?1300次閱讀

    螞蟻集團(tuán)收購邊塞科技,吳翼出任強(qiáng)化學(xué)習(xí)實驗室首席科學(xué)家

    領(lǐng)域的研究與發(fā)展。令人矚目的是,邊塞科技的創(chuàng)始人吳翼已正式加入該實驗室,并擔(dān)任首席科學(xué)家一職。 吳翼在其個人社交平臺上對這一變動進(jìn)行了回應(yīng)。他表示,自己最近接受了螞蟻集團(tuán)的邀請,負(fù)責(zé)大模型強(qiáng)化學(xué)習(xí)領(lǐng)域的
    的頭像 發(fā)表于 11-22 11:14 ?1600次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為
    的頭像 發(fā)表于 11-15 15:20 ?674次閱讀

    NPU在深度學(xué)習(xí)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度
    的頭像 發(fā)表于 11-14 15:17 ?1936次閱讀

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    領(lǐng)域的研究人員的工作模式相融合,也是一個亟待解決的問題。然而,這些挑戰(zhàn)也孕育著新的機(jī)遇。隨著技術(shù)的不斷進(jìn)步和應(yīng)用場景的拓展,AI在生命科學(xué)領(lǐng)域的應(yīng)用更加廣泛和深入,為科學(xué)家們提供更多
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究的核心技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)神經(jīng)
    發(fā)表于 10-14 09:16

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第一章人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速器 第一章清晰地闡述了人工智能作為科學(xué)研究工具的強(qiáng)大功能。通過機(jī)器學(xué)習(xí)、深度學(xué)
    發(fā)表于 10-14 09:12

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    ,F(xiàn)PGA 也需要不斷適應(yīng)和改進(jìn)。研究人員和開發(fā)致力于針對 FPGA 的特點對深度學(xué)習(xí)算法進(jìn)行優(yōu)化,例如探索更高效的模型壓縮方法、量化技
    發(fā)表于 09-27 20:53

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1157次閱讀