99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)模型存在嚴(yán)重缺陷?

倩倩 ? 來源:文財(cái)網(wǎng) ? 2020-07-22 15:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

多年來,許多人工智能發(fā)燒友和研究人員一直承諾,機(jī)器學(xué)習(xí)將改變現(xiàn)代醫(yī)學(xué)。已經(jīng)開發(fā)了成千上萬種算法來診斷癌癥,心臟病和精神病等疾病?,F(xiàn)在,正在通過識(shí)別肺部CT掃描和X射線圖像中的模式來訓(xùn)練算法來檢測COVID-19。

這些模型中的許多模型旨在預(yù)測哪些患者的結(jié)局最嚴(yán)重,哪些患者需要呼吸機(jī)。激動(dòng)是顯而易見的。如果這些模型是準(zhǔn)確的,它們可以為醫(yī)生提供測試和治療患者的巨大優(yōu)勢。

但是,使用AI輔助藥物治療真正的COVID-19患者的吸引力似乎還很遙遠(yuǎn)。世界各地的一組統(tǒng)計(jì)學(xué)家都對(duì)絕大多數(shù)機(jī)器學(xué)習(xí)模型的質(zhì)量以及如果醫(yī)院盡快采用它們可能造成的危害表示關(guān)注。

“ [它]使我們很多人感到恐懼,因?yàn)槲覀冎揽梢允褂媚P蛠碜龀鲠t(yī)療決定,”荷蘭烏得勒支大學(xué)醫(yī)學(xué)中心的醫(yī)學(xué)統(tǒng)計(jì)學(xué)家Maarten van Smeden說?!叭绻P筒缓?,他們可能會(huì)使醫(yī)療決策更糟。因此它們實(shí)際上可以傷害患者?!?/p>

Van Smeden與一大批國際研究人員共同領(lǐng)導(dǎo)一個(gè)項(xiàng)目,以使用標(biāo)準(zhǔn)化標(biāo)準(zhǔn)評(píng)估COVID-19模型。該項(xiàng)目是BMJ的首次現(xiàn)場審查,這意味著他們的40名審查員(并且正在不斷增長)的團(tuán)隊(duì)將在發(fā)布新模型時(shí)積極更新其審查。

到目前為止,他們對(duì)COVID-19機(jī)器學(xué)習(xí)模型的評(píng)論并不理想:他們嚴(yán)重缺乏數(shù)據(jù),并且缺乏來自廣泛研究領(lǐng)域的必要專業(yè)知識(shí)。但是,新的COVID-19算法面臨的問題根本就不是新問題:醫(yī)學(xué)研究中的AI模型已經(jīng)存在嚴(yán)重缺陷,多年來,van Smeden等統(tǒng)計(jì)學(xué)家一直試圖發(fā)出警告以扭轉(zhuǎn)局勢。

折磨數(shù)據(jù)

在COVID-19大流行之前,范德比爾特大學(xué)的生物統(tǒng)計(jì)學(xué)家弗蘭克·哈雷爾(Frank Harrell)環(huán)游全國,與醫(yī)學(xué)研究人員就當(dāng)前醫(yī)學(xué)AI模型的廣泛問題進(jìn)行了討論。他經(jīng)常借用著名經(jīng)濟(jì)學(xué)家的話來描述這個(gè)問題:醫(yī)學(xué)研究人員正在使用機(jī)器學(xué)習(xí)來“折磨他們的數(shù)據(jù),直到吐出口供為止”。

這些數(shù)字證明了Harrell的主張,這表明絕大多數(shù)醫(yī)學(xué)算法幾乎不符合基本質(zhì)量標(biāo)準(zhǔn)。2019年10月,由英國伯明翰大學(xué)的劉曉軒和Alastair Denniston領(lǐng)導(dǎo)的一組研究人員發(fā)表了第一個(gè)系統(tǒng)綜述,旨在回答這一時(shí)髦卻難以捉摸的問題:機(jī)器在診斷患者方面是否能比患者更好甚至更好?人類醫(yī)生?他們得出的結(jié)論是,從醫(yī)學(xué)成像檢測疾病時(shí),大多數(shù)機(jī)器學(xué)習(xí)算法都可以與人類醫(yī)生媲美。然而,還有另一個(gè)更健壯和令人震驚的發(fā)現(xiàn)-自2012年以來,在發(fā)表的關(guān)于疾病檢測算法的總共20,530項(xiàng)研究中,只有不到1%的方法學(xué)嚴(yán)謹(jǐn)性足以納入其分析。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 醫(yī)療
    +關(guān)注

    關(guān)注

    8

    文章

    1907

    瀏覽量

    59966
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3522

    瀏覽量

    50450
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8505

    瀏覽量

    134677
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    模型在半導(dǎo)體行業(yè)的應(yīng)用可行性分析

    有沒有這樣的半導(dǎo)體專用大模型,能縮短芯片設(shè)計(jì)時(shí)間,提高成功率,還能幫助新工程師更快上手。或者軟硬件可以在設(shè)計(jì)和制造環(huán)節(jié)確實(shí)有實(shí)際應(yīng)用。會(huì)不會(huì)存在AI缺陷檢測。 能否應(yīng)用在工藝優(yōu)化和預(yù)測性維護(hù)中
    發(fā)表于 06-24 15:10

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線性回歸、決策樹和神經(jīng)網(wǎng)絡(luò)這些常見的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的算法,它們能夠
    的頭像 發(fā)表于 04-02 14:10 ?523次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?368次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人大模型

    近年來,人工智能領(lǐng)域的大模型技術(shù)在多個(gè)方向上取得了突破性的進(jìn)展,特別是在機(jī)器人控制領(lǐng)域展現(xiàn)出了巨大的潛力。在“具身智能機(jī)器人大模型”部分,作者研究并探討了大
    發(fā)表于 12-29 23:04

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    醫(yī)療領(lǐng)域,手術(shù)輔助機(jī)器人需要毫米級(jí)的精確控制,書中有介紹基于視覺伺服的實(shí)時(shí)控制算法,以及如何利用大模型優(yōu)化手術(shù)路徑規(guī)劃。工業(yè)場景中,協(xié)作機(jī)器人面臨的主要挑戰(zhàn)是快速適應(yīng)新工藝流程。具身智能通過在線
    發(fā)表于 12-24 15:03

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)分析技術(shù)的創(chuàng)新源之一,
    的頭像 發(fā)表于 11-16 01:07 ?970次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)算法的運(yùn)行效率,特別是在處理大規(guī)模數(shù)據(jù)集和復(fù)雜神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 09:19 ?1238次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2998次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>存在</b>什么區(qū)別

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :
    的頭像 發(fā)表于 10-23 15:25 ?2906次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大
    的頭像 發(fā)表于 10-23 15:01 ?2606次閱讀

    構(gòu)建語音控制機(jī)器人 - 線性模型機(jī)器學(xué)習(xí)

    2024-07-31 |Annabel Ng 在該項(xiàng)目的[上一篇博客文章]中,我介紹了運(yùn)行機(jī)器人電機(jī)、處理音頻信號(hào)和調(diào)節(jié)電壓所需的電路的基礎(chǔ)知識(shí)。然而,機(jī)器人還沒有完全完成!盡管機(jī)器人可以正確移動(dòng)
    的頭像 發(fā)表于 10-02 16:31 ?583次閱讀
    構(gòu)建語音控制<b class='flag-5'>機(jī)器</b>人 - 線性<b class='flag-5'>模型</b>和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    提高機(jī)器學(xué)習(xí)模型效果與性能的過程。 而我對(duì)特征工程的理解就是從一堆數(shù)據(jù)里找出能表示這堆數(shù)據(jù)的最小數(shù)據(jù)集,而這個(gè)找出特征數(shù)據(jù)的過程就是信息提取。 隨后給出了一系列定義,包括特征的最小最大縮放、特征的標(biāo)準(zhǔn)化
    發(fā)表于 08-14 18:00

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了機(jī)器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    、機(jī)器翻譯、文本生成等領(lǐng)域具有廣泛應(yīng)用。它們能夠基于用戶的提問或描述生成相關(guān)的答案或執(zhí)行指令,極大地提升了信息檢索和利用的效率。 2. 局限性 盡管大語言模型在自然語言理解方面取得了顯著進(jìn)展,但它們?nèi)匀?b class='flag-5'>存在
    發(fā)表于 08-02 11:03

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)篇

    今天開始學(xué)習(xí)《大語言模型應(yīng)用指南》第一篇——基礎(chǔ)篇,對(duì)于人工智能相關(guān)專業(yè)技術(shù)人員應(yīng)該可以輕松加愉快的完成此篇閱讀,但對(duì)于我還是有許多的知識(shí)點(diǎn)、專業(yè)術(shù)語比較陌生,需要網(wǎng)上搜索學(xué)習(xí)更多的資料才能理解書中
    發(fā)表于 07-25 14:33