99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于Cortex部署PyTorch模型

汽車玩家 ? 來(lái)源:AI公園 ? 作者:Caleb Kaiser ? 2020-04-19 11:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

使用Cortex可以非常方便的部署PyTorch模型。

今年是 PyTorch 成為最受研究人員歡迎的機(jī)器學(xué)習(xí)(ML)框架的一年。

該框架的 python 風(fēng)格,其學(xué)習(xí)曲線的溫和性,以及它對(duì)快速和簡(jiǎn)單原型的方便實(shí)現(xiàn),使 PyTorch 明顯成為研究人員的最愛(ài)。因此,它正在推動(dòng)一些最酷的機(jī)器學(xué)習(xí)項(xiàng)目:

Transformers,Hugging Face 生成的廣泛流行的自然語(yǔ)言處理(NLP)庫(kù),是建立在 PyTorch 上的。

Selene,生物前沿 ML 庫(kù),建在 PyTorch 上。

CrypTen,這個(gè)熱門的、新的、關(guān)注隱私的機(jī)器學(xué)習(xí)框架是建立在 PyTorch 上的。

在 ML 的幾乎任何領(lǐng)域,從計(jì)算機(jī)視覺(jué)到 NLP 再到計(jì)算生物學(xué),你都會(huì)發(fā)現(xiàn) PyTorch 在前沿為實(shí)驗(yàn)提供能量。

然而,最自然的問(wèn)題是如何將這些實(shí)驗(yàn)合并到軟件中。如何從“跨語(yǔ)言語(yǔ)言模型”轉(zhuǎn)換為谷歌翻譯?

在這篇博客文章中,我們將了解在生產(chǎn)環(huán)境中使用 PyTorch 模型意味著什么,然后介紹一種允許部署任何 PyTorch 模型以便在軟件中使用的方法。

在生產(chǎn)中使用 PyTorch 意味著什么?

根據(jù)生產(chǎn)環(huán)境的不同,在生產(chǎn)環(huán)境中運(yùn)行機(jī)器學(xué)習(xí)可能意味著不同的事情。一般來(lái)說(shuō),在生產(chǎn)中有兩類機(jī)器學(xué)習(xí)的設(shè)計(jì)模式:

通過(guò)推理服務(wù)器提供一個(gè)預(yù)測(cè) API。這是在通用軟件開發(fā)中使用的標(biāo)準(zhǔn)方法,即不是移動(dòng)軟件或獨(dú)立設(shè)備。

嵌入。將你的模型直接嵌入到你的應(yīng)用程序中。這通常用于機(jī)器人和獨(dú)立設(shè)備,有時(shí)也用于移動(dòng)應(yīng)用程序。

如果你打算直接將你的模型嵌入到你的應(yīng)用程序中,那么你應(yīng)該看看 PyTorch 的 TorchScript。使用即時(shí)編譯,PyTorch 可以將 Python 編譯成不需要 Python 解釋器就可以運(yùn)行的 TorchScript,這對(duì)于資源受限的部署目標(biāo)(比如移動(dòng)設(shè)備)非常有用。

在大多數(shù)情況下,你會(huì)使用模型服務(wù)器。今天你看到的許多 ML 應(yīng)用程序 — 從你最喜歡的流媒體服務(wù)背后的推薦引擎到在線搜索欄中的自動(dòng)完成功能—都依賴于這種部署形式,更確切地說(shuō),依賴于實(shí)時(shí)推理。

在實(shí)時(shí)推理中,一個(gè)模型通常被部署為一個(gè)微服務(wù)(通常是一個(gè) JSON API),通過(guò)它,一個(gè)軟件可以查詢模型并接收預(yù)測(cè)。

讓我們以 Facebook 人工智能的 RoBERTa 為例,一個(gè)領(lǐng)先的 NLP 模型。它通過(guò)分析去掉一個(gè)單詞的句子(或“屏蔽詞”),并猜測(cè)屏蔽詞是什么,來(lái)進(jìn)行推斷。例如,如果你要使用一個(gè)預(yù)先訓(xùn)練好的 RoBERTa 模型來(lái)猜測(cè)一個(gè)句子中的下一個(gè)單詞,你要使用的 Python 方法是這樣的,非常簡(jiǎn)單:

roberta.fill_mask(input_text + " ")

事實(shí)證明,在序列中預(yù)測(cè)缺失的單詞正是 autocomplete 等功能背后的功能。要在應(yīng)用程序中實(shí)現(xiàn) autocomplete,可以將 RoBERTa 部署為 JSON API,然后在應(yīng)用程序中使用用戶的輸入在 RoBERTa 節(jié)點(diǎn)上進(jìn)行查詢。

設(shè)置 JSON API 聽起來(lái)相當(dāng)簡(jiǎn)單,但是將模型部署為微服務(wù)實(shí)際上需要大量的基礎(chǔ)設(shè)施工作。

你需要自動(dòng)控制流量的波動(dòng)。你需要監(jiān)控你的預(yù)測(cè)。你需要處理模型更新。你需要了解日志記錄。非常多的工作。

那么,問(wèn)題是如何將 RoBERTa 部署為一個(gè) JSON API,而不需要手動(dòng)滾動(dòng)所有這些自定義基礎(chǔ)設(shè)施?

將 PyTorch 模型與 Cortex 一起投入生產(chǎn)

你可以使用 Cortex 自動(dòng)化部署 PyTorch 模型所需的大部分基礎(chǔ)設(shè)施工作,這是一個(gè)將模型作為 api 部署到 AWS 上的開源工具。這篇文章并不是一個(gè)完整的 Cortex 使用指南,只是一個(gè)高層次的 Cortex 使用方法,你所需要的是:

提供推斷的 Python 腳本

定義你的 API 的配置文件

Cortex CLI 啟動(dòng)你的部署

這種方法并不局限于 RoBERTa。想要為你的圖像自動(dòng)生成 alt 文本,使你的網(wǎng)站更容易訪問(wèn)?你可以部署一個(gè) AlexNet 模型,使用 PyTorch 和 Cortex 來(lái)標(biāo)記圖像。

那語(yǔ)言分類器呢,比如 Chrome 用來(lái)檢測(cè)頁(yè)面不是用默認(rèn)語(yǔ)言寫的那個(gè)?fastText 是這個(gè)任務(wù)的完美模型,你可以使用 PyTorch 和 Cortex 部署它。

使用 Cortex,你可以將許多由 PyTorch 支持的 ML 特性添加到你的應(yīng)用程序中進(jìn)行實(shí)時(shí)推斷。

PyTorch 用到生產(chǎn)中

有超過(guò) 25 個(gè)研究模型儲(chǔ)存在 PyTorch Hub],從 NLP 到計(jì)算機(jī)視覺(jué)。所有這些都可以通過(guò) Cortex 來(lái)實(shí)現(xiàn),使用的過(guò)程和我們剛才演示的一樣。

PyTorch 團(tuán)隊(duì)無(wú)疑在他們的路線圖上有更多的以生產(chǎn)為中心的特性,但是僅僅看看到目前為止所取得的進(jìn)展,很明顯 PyTorch 不是為生產(chǎn)而構(gòu)建的框架的觀點(diǎn)已經(jīng)過(guò)時(shí)了。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4827

    瀏覽量

    86830
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    809

    瀏覽量

    13978
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何使用Docker部署模型

    隨著深度學(xué)習(xí)和大模型的快速發(fā)展,如何高效地部署這些模型成為了一個(gè)重要的挑戰(zhàn)。Docker 作為一種輕量級(jí)的容器化技術(shù),能夠?qū)?b class='flag-5'>模型及其依賴環(huán)境打包成一個(gè)可移植的容器,極大地簡(jiǎn)化了
    的頭像 發(fā)表于 05-24 16:39 ?360次閱讀

    RT-Thread虛擬化部署DeepSeek大模型實(shí)踐

    Cortex-A55,8GBLPDDR4),通過(guò)虛擬化技術(shù)實(shí)現(xiàn)虛擬化Linux+RTOS混合部署,并在Linux環(huán)境中部署輕量化大語(yǔ)言模型DeepSeek-1.5B+語(yǔ)音轉(zhuǎn)
    的頭像 發(fā)表于 03-12 18:38 ?697次閱讀
    RT-Thread虛擬化<b class='flag-5'>部署</b>DeepSeek大<b class='flag-5'>模型</b>實(shí)踐

    K230D部署模型失敗的原因?

    MicroPython部署的無(wú)法正常運(yùn)行,采用C++版本的無(wú)法實(shí)現(xiàn)部署 嘗試解決過(guò)程 1.考慮到可能是固件不匹配的問(wèn)題,重新燒錄了流程(生成模型后給的readme)中要求的固件,依舊無(wú)法成功
    發(fā)表于 03-11 06:19

    使用OpenVINO? 2021.4將經(jīng)過(guò)訓(xùn)練的自定義PyTorch模型加載為IR格式時(shí)遇到錯(cuò)誤怎么解決?

    使用 OpenVINO? 2021.4 將經(jīng)過(guò)訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時(shí)遇到錯(cuò)誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    添越智創(chuàng)基于 RK3588 開發(fā)板部署測(cè)試 DeepSeek 模型全攻略

    DeepSeek 模型部署與測(cè)試,開啟這場(chǎng)充滿挑戰(zhàn)與驚喜的技術(shù)探索之旅。 RK3588 開發(fā)板:AI 性能擔(dān)當(dāng) RK3588 開發(fā)板基于先進(jìn)的 8nm LP 制程工藝精心打造,其硬件配置堪稱豪華,在 AI
    發(fā)表于 02-14 17:42

    企業(yè)AI模型部署攻略

    當(dāng)下,越來(lái)越多的企業(yè)開始探索和實(shí)施AI模型,以提升業(yè)務(wù)效率和競(jìng)爭(zhēng)力。然而,AI模型部署并非易事,需要企業(yè)在多個(gè)層面進(jìn)行細(xì)致的規(guī)劃和準(zhǔn)備。下面,AI部落小編為企業(yè)提供一份AI模型
    的頭像 發(fā)表于 12-23 10:31 ?802次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測(cè)模型

    以及邊緣計(jì)算能力的增強(qiáng),越來(lái)越多的目標(biāo)檢測(cè)應(yīng)用開始直接在靠近數(shù)據(jù)源的邊緣設(shè)備上運(yùn)行。這不僅減少了數(shù)據(jù)傳輸延遲,保護(hù)了用戶隱私,同時(shí)也減輕了云端服務(wù)器的壓力。然而,在邊緣端部署高效且準(zhǔn)確的目標(biāo)檢測(cè)模型
    發(fā)表于 12-19 14:33

    如何開啟Stable Diffusion WebUI模型推理部署

    如何開啟Stable Diffusion WebUI模型推理部署
    的頭像 發(fā)表于 12-11 20:13 ?565次閱讀
    如何開啟Stable Diffusion WebUI<b class='flag-5'>模型</b>推理<b class='flag-5'>部署</b>

    在設(shè)備上利用AI Edge Torch生成式API部署自定義大語(yǔ)言模型

    我們很高興地發(fā)布 AI Edge Torch 生成式 API,它能將開發(fā)者用 PyTorch 編寫的高性能大語(yǔ)言模型 (LLM) 部署至 TensorFlow Lite (TFLite) 運(yùn)行時(shí)
    的頭像 發(fā)表于 11-14 10:23 ?1154次閱讀
    在設(shè)備上利用AI Edge Torch生成式API<b class='flag-5'>部署</b>自定義大語(yǔ)言<b class='flag-5'>模型</b>

    PyTorch GPU 加速訓(xùn)練模型方法

    在深度學(xué)習(xí)領(lǐng)域,GPU加速訓(xùn)練模型已經(jīng)成為提高訓(xùn)練效率和縮短訓(xùn)練時(shí)間的重要手段。PyTorch作為一個(gè)流行的深度學(xué)習(xí)框架,提供了豐富的工具和方法來(lái)利用GPU進(jìn)行模型訓(xùn)練。 1. 了解GPU加速
    的頭像 發(fā)表于 11-05 17:43 ?1419次閱讀

    PyTorch 數(shù)據(jù)加載與處理方法

    PyTorch 是一個(gè)流行的開源機(jī)器學(xué)習(xí)庫(kù),它提供了強(qiáng)大的工具來(lái)構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型。在構(gòu)建模型之前,一個(gè)重要的步驟是加載和處理數(shù)據(jù)。 1. PyTorch 數(shù)據(jù)加載基礎(chǔ) 在
    的頭像 發(fā)表于 11-05 17:37 ?947次閱讀

    如何在 PyTorch 中訓(xùn)練模型

    PyTorch 是一個(gè)流行的開源機(jī)器學(xué)習(xí)庫(kù),廣泛用于計(jì)算機(jī)視覺(jué)和自然語(yǔ)言處理等領(lǐng)域。它提供了強(qiáng)大的計(jì)算圖功能和動(dòng)態(tài)圖特性,使得模型的構(gòu)建和調(diào)試變得更加靈活和直觀。 數(shù)據(jù)準(zhǔn)備 在訓(xùn)練模型之前,首先需要
    的頭像 發(fā)表于 11-05 17:36 ?939次閱讀

    使用PyTorch在英特爾獨(dú)立顯卡上訓(xùn)練模型

    PyTorch 2.5重磅更新:性能優(yōu)化+新特性》中的一個(gè)新特性就是:正式支持在英特爾獨(dú)立顯卡上訓(xùn)練模型
    的頭像 發(fā)表于 11-01 14:21 ?2070次閱讀
    使用<b class='flag-5'>PyTorch</b>在英特爾獨(dú)立顯卡上訓(xùn)練<b class='flag-5'>模型</b>

    新手小白怎么通過(guò)云服務(wù)器跑pytorch?

    安裝PyTorch的步驟可以根據(jù)不同的操作系統(tǒng)和需求有所差異,通過(guò)云服務(wù)器運(yùn)行PyTorch的過(guò)程主要包括選擇GPU云服務(wù)器平臺(tái)、配置服務(wù)器環(huán)境、部署和運(yùn)行PyTorch
    的頭像 發(fā)表于 09-25 11:35 ?574次閱讀

    基于Pytorch訓(xùn)練并部署ONNX模型在TDA4應(yīng)用筆記

    電子發(fā)燒友網(wǎng)站提供《基于Pytorch訓(xùn)練并部署ONNX模型在TDA4應(yīng)用筆記.pdf》資料免費(fèi)下載
    發(fā)表于 09-11 09:24 ?0次下載
    基于<b class='flag-5'>Pytorch</b>訓(xùn)練并<b class='flag-5'>部署</b>ONNX<b class='flag-5'>模型</b>在TDA4應(yīng)用筆記