資料介紹
近來,業(yè)界對于隔離式 DC-DC 穩(wěn)壓器中高頻變壓器的性能要求愈發(fā)嚴苛,尤其是在抗電磁干擾 (EMI) 方面。在本系列文章的第 7 部分中,我們詳細探討了隔離式反激穩(wěn)壓器中共模 (CM) 噪聲的主要來源和傳播路徑。
高瞬態(tài)電壓 (dv/dt) 開關(guān)節(jié)點是共模噪聲的主要來源,而變壓器的繞組間分布電容則是共模噪聲的主要耦合路徑。在第 7 部分中,我們在簡單方便的雙電容變壓器模型基礎(chǔ)上,采用共模噪聲等效電路來模擬流經(jīng)變壓器電容的位移電流。在此期間,僅需使用一個信號發(fā)生器和一個示波器即可提取寄生電容并確定變壓器共模噪聲性能的特征,而無需進行在線測試。
在第 8 部分,我們將探討隔離式 DC/DC 電路的共模噪聲抑制方法。工作在高輸入電壓下的轉(zhuǎn)換器(例如,電動汽車車載充電系統(tǒng)、數(shù)據(jù)中心電源系統(tǒng)和射頻功放電源中的相移式全橋轉(zhuǎn)換器和 LLC 串聯(lián)諧振轉(zhuǎn)換器)會產(chǎn)生較大的共模電流。在采用氮化鎵開關(guān)器件時,這種情況更為明顯,因為此類器件的開關(guān)速度 dv/dt 高于硅材質(zhì)的同類器件。
對于隔離式設(shè)計,有多種抑制共模噪聲的方法,包括采用對稱的電路布局、在初級側(cè)接地端與次級側(cè)接地端之間連接一個電容、加入屏蔽層、增加平衡電容、優(yōu)化變壓器繞組設(shè)計以及使用可調(diào)節(jié)共模噪聲消除輔助繞組。本文將以反激電路為重點,逐一解讀這些方法。
對稱式電路設(shè)計
在對稱式拓撲結(jié)構(gòu)中,與地之間形成互補電勢的開關(guān)節(jié)點成對出現(xiàn)。如果關(guān)聯(lián)寄生電容相同,則產(chǎn)生的共模位移電流基本可以相互抵消。圖 1a 為雙開關(guān)正激轉(zhuǎn)換器(例如 LM5015)的原理圖。圖 1b 為采用分立式初級側(cè)和次級側(cè)繞組的反激轉(zhuǎn)換器。這兩種轉(zhuǎn)換器的初級側(cè)電路均采用對稱式設(shè)計,具有異相電壓開關(guān)波形(SW1 和 SW2),可產(chǎn)生相反極性的共模電流,從而降低總共模噪聲。
圖 1a 為雙開關(guān)正激轉(zhuǎn)換器的拓撲結(jié)構(gòu),盡管這種結(jié)構(gòu)早已為人所熟知,但其在共模噪聲抑制方面的優(yōu)勢卻并未得到充分重視。圖 1b 為平衡繞組反激轉(zhuǎn)換器,其次級繞組同樣采用對稱式設(shè)計。分立式繞組通??梢越诲e纏繞,以降低漏電感。這種電路的主要缺點是需要一個以 SW2 為基準點的浮動柵極驅(qū)動器。
對于單開關(guān)正激轉(zhuǎn)換器和 LLC 諧振轉(zhuǎn)換器拓撲,也可以采用類似的對稱式平衡繞組設(shè)計,如圖 2 所示。改進后的對稱電路需要額外增加一些元件,例如正激轉(zhuǎn)換器中的浮動?xùn)艠O驅(qū)動器和 LLC 諧振電路中的附加開關(guān),并且只有在變壓器的物理繞組結(jié)構(gòu)產(chǎn)生對稱的寄生電容時才會產(chǎn)生共模衰減的效果。因此通常情況下,需要采用其他方法來抑制共模噪聲,并使用傳統(tǒng)的隔離式拓撲電路。
在初級地與次級地之間連接一個電容
在三線 AC-DC 應(yīng)用中,通常會在 EMI 輸入濾波器中通過一個 Y 電容將火線和零線連接到機箱地,用以衰減共模噪聲。但在雙線 DC-DC 系統(tǒng)中,由于沒有機箱地連接點,因此無法連接 Y 電容。在這類系統(tǒng)中,可以在初級側(cè)接地端 (P-GND) 與次級側(cè)接地端 (S-GND) 之間連接一個替代電容,將傳播到次級側(cè)的共模電流分流回初級側(cè)。
請參見第 7 部分圖 1 中的 CZ 電容。該元件是一種安全級電容,額定電壓為 1 kV 或更高,遠高于所需的隔離電壓規(guī)格。然而這種電容一旦在故障狀況下出現(xiàn)短路,就會大大影響電流隔離效果。此外,如果 S-GND 連接的共模電壓擺幅相對于初級側(cè)過大(例如在高側(cè)柵極驅(qū)動器偏置電源應(yīng)用中),電容傳導(dǎo)的電流就會過大。同時,如果 DC-DC 級的前端是一個 AC-DC 前端整流器,則該電容可能會傳導(dǎo)工頻泄漏電流,這在實際應(yīng)用中可能是不允許的,也是受到監(jiān)管要求限制的。
共模噪聲的平衡與消除方法
平衡方法分為變壓器內(nèi)部平衡和外部平衡,可以降低與變壓器繞組電容相關(guān)的共模噪聲。內(nèi)部平衡方法包括應(yīng)用屏蔽層、優(yōu)化繞組設(shè)計以及使用噪聲消除繞組。而外部平衡方法最常見的是在所選初級和次級繞組端子之間加入一個平衡電容。
屏蔽
屏蔽方法通過插入導(dǎo)線或金屬箔屏蔽層來降低流經(jīng)繞組間電容的位移電流,從而阻止變壓器初級側(cè)繞組與次級側(cè)繞組之間的近場耦合。
例如,圖 3a 是一個反激轉(zhuǎn)換器,其初級側(cè)與次級側(cè)之間加入了一個傳統(tǒng)的單匝金屬箔屏蔽繞組。圖 3b 是 RM 型磁芯的示意圖,磁芯配有帶氣隙的中柱和垂直放置的繞組。在這半個繞組窗口中,共有兩個串聯(lián)的初級層 (2 x 12T)、一個次級層 (1 x 8T) 和一個屏蔽層。繞組采用非交錯式分層布局,分為 P1、P2、SH1 和 S1 四層。圖中還顯示了繞組層間寄生電容。
在初級層 P2 與次級層 S1 之間,加入了一個單屏蔽層 SH1。該屏蔽層通常連接回初級側(cè)電路中的靜態(tài)電位點,例如圖 3 所示的本地 P-GND 或輸入電容的正極端子,即靜態(tài)交流節(jié)點。這樣可以阻止 P2 和 S1 之間的電耦合,并消除 P2 與 S1 之間的位移電流。
加入屏蔽層后,ipsh 將經(jīng)由屏蔽層返回 P-GND,而不是流經(jīng)輸出端而返回機箱地。但是,屏蔽層與相鄰次級繞組之間的電容依然存在。由于單匝屏蔽繞組與次級繞組的感應(yīng)電壓存在差異(單匝次級繞組除外),因此在屏蔽層與次級繞組之間必然存在共模電流??筛挠幂o助繞組的抽頭來驅(qū)動屏蔽繞組,使屏蔽繞組的平均電壓與次級繞組的平均電壓相符,以實現(xiàn)共模平衡。
注意,由于磁芯采用高介電常數(shù)材料,圖 3 中 P1 層和 S1 層之間會存在耦合。所以,盡管單屏蔽層有助于減弱共模噪聲,但并不能徹底消除。此外,還有一個缺點是,隨著初級側(cè)與次級側(cè)間邊界數(shù)量的增加,需要的屏蔽層也越來越多。重要的是,屏蔽層會增大繞組之間的空間,從而導(dǎo)致漏電感增加。通常而言,應(yīng)盡可能減小銅箔屏蔽層的厚度,以減少因鄰近效應(yīng)引起的渦流損耗。在高開關(guān)頻率下,屏蔽層中的損耗會變得過大,而且屏蔽層也會使反射到開關(guān)節(jié)點的總寄生電容增大。
平衡電容的值與位置
圖 4a 為帶初級側(cè)、次級側(cè)和輔助變壓器繞組的反激轉(zhuǎn)換器的原理圖。NPS和 NAUX代表初級側(cè)與次級側(cè)繞組匝數(shù)比以及初級側(cè)與輔助繞組匝數(shù)比。對于初級側(cè)繞組與輔助繞組而言,由于電流僅在初級側(cè)流動,對共模噪聲不產(chǎn)生影響,因此不考慮這兩者之間的耦合。在第 7 部分中我們曾討論過,通過兩個 4 電容電路即可對初級側(cè)繞組與次級側(cè)繞組之間以及輔助繞組與次級側(cè)繞組之間的耦合進行建模(如圖 4b 所示)。
如果輸入電容對共模噪聲呈現(xiàn)低阻抗特性,則初級側(cè)繞組的端子 A 與 P-GND 之間短路??梢允褂煤喕碾p電容變壓器模型,再以 ZSE 模擬 S-GND 與大地之間的電容耦合,最終的共模噪聲等效電路模型見圖 4c(有關(guān)更多相關(guān)信息和描述,請參見第 7 部分)。
公式 1 用于計算線路阻抗穩(wěn)定網(wǎng)絡(luò) (LISN) 中的共模噪聲電壓。從中可以看出,降低電容CBD可以使噪聲電壓降低。
公式 2 是CBD的理論表達式,該值可使用第 7 部分介紹的方法基于公式 3 進行計算:
可以通過增大公式 2 中各負項的值,將 CBD平衡為零。最簡單的方法是在初級側(cè)和次級側(cè)間變壓器端子 A 和 C 之間的 C3 上并聯(lián)一個電容。這一外部平衡電容的值為 CEXT = NPSCBD
同樣,如果CBD為負值(VAD 和 VAB壓異相),則在端子 B 與 D 之間的 C4 上并聯(lián)一個等于 |CBD| 的平衡電容,可實現(xiàn)平衡。注意,根據(jù)公式 3,如果測得的 VAD 為零,則CBD也相當于零,基本消除了通過變壓器的共模噪聲。這是非常方便的測試變壓器是否平衡的手段。
繞組設(shè)計
除了使用平衡電容外,還可以通過調(diào)整變壓器繞組層的位置,來優(yōu)化共模平衡。根據(jù)成對繞組層的設(shè)計理念,變壓器初級側(cè)和次級側(cè)的層具有相似的 dv/dt,因此,這些層的交錯重疊不會產(chǎn)生共模噪聲。繞組間電容兩端的平均電壓具有相似的幅值和極性,也可以最大程度減小甚至消除流經(jīng)電容的共模電流。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 隔離式DC/DC轉(zhuǎn)換器的過壓保護
- 共模電感如何抑制干擾噪聲 5次下載
- EMI 的工程師指南第 8 部分 — 隔離式 DC/DC 電路的共模噪聲抑制方法
- 數(shù)控非隔離式DC/DC降壓轉(zhuǎn)換器參考設(shè)計
- 隔離式SIP DC/DC PMP4415參考設(shè)計
- 隔離式SIP DC/DC模塊參考設(shè)計
- DC-DC模塊電源的反饋電路和設(shè)計方法
- 隔離式DC-DC變換器芯片選型資料下載 77次下載
- 差分線四個概念:什么是差模,共模,奇模,偶模?資料下載
- 共模電感如何抑制共模信號?資料下載
- 什么是共模與差模,如何識別?如何抑制?資料下載
- 隔離設(shè)計中的共模 (CM) 噪聲詳細分析資料下載
- 電壓源逆變器模型預(yù)測共模電壓抑制方法 25次下載
- 一種雙向隔離DC-DC變換器二次紋波電壓抑制方法 7次下載
- 隔離式DC/DC變換器的電磁兼容設(shè)計
- 消除共模噪聲的秘密武器-共模抑制比 3633次閱讀
- 升壓型DCDC轉(zhuǎn)換器高頻噪聲的抑制方法 958次閱讀
- 共模扼流線圈的區(qū)分 電源線用共模扼流圈的使用方法 1758次閱讀
- 差模信號和共模信號的區(qū)別 共模噪聲影響電路工作的實質(zhì) 3442次閱讀
- 如何設(shè)計隔離式DC/DC轉(zhuǎn)換器的極低噪聲濾波器 4708次閱讀
- 基于500mW隔離式設(shè)計中無需單獨的隔離式 DC-DC 轉(zhuǎn)換器 1850次閱讀
- 實現(xiàn)共模噪聲電流相互抵消的方法 3353次閱讀
- 無源共模干擾抑制技術(shù)的特點、應(yīng)用及驗證 2589次閱讀
- 為什么共模電感也能夠抑制差模信號? 9929次閱讀
- 共模電感如何抑制共模信號 1.2w次閱讀
- DC/DC轉(zhuǎn)換器傳導(dǎo)EMI - 第2部分,噪聲傳播和濾波 3338次閱讀
- 共模電感的作用 3.4w次閱讀
- 怎樣抑制共模輻射的電磁干擾噪聲? 4158次閱讀
- 什么是共模信號_為什么要抑制共模信號 6.3w次閱讀
- 共模電感是如何抑制干擾噪聲 1.1w次閱讀
下載排行
本周
- 1DD3118電路圖紙資料
- 0.08 MB | 1次下載 | 免費
- 2AD庫封裝庫安裝教程
- 0.49 MB | 1次下載 | 免費
- 3PC6206 300mA低功耗低壓差線性穩(wěn)壓器中文資料
- 1.12 MB | 1次下載 | 免費
- 4網(wǎng)絡(luò)安全從業(yè)者入門指南
- 2.91 MB | 1次下載 | 免費
- 5DS-CS3A P00-CN-V3
- 618.05 KB | 1次下載 | 免費
- 6海川SM5701規(guī)格書
- 1.48 MB | 次下載 | 免費
- 7H20PR5電磁爐IGBT功率管規(guī)格書
- 1.68 MB | 次下載 | 1 積分
- 8IP防護等級說明
- 0.08 MB | 次下載 | 免費
本月
- 1貼片三極管上的印字與真實名稱的對照表詳細說明
- 0.50 MB | 103次下載 | 1 積分
- 2涂鴉各WiFi模塊原理圖加PCB封裝
- 11.75 MB | 89次下載 | 1 積分
- 3錦銳科技CA51F2 SDK開發(fā)包
- 24.06 MB | 43次下載 | 1 積分
- 4錦銳CA51F005 SDK開發(fā)包
- 19.47 MB | 19次下載 | 1 積分
- 5PCB的EMC設(shè)計指南
- 2.47 MB | 16次下載 | 1 積分
- 6HC05藍牙原理圖加PCB
- 15.76 MB | 13次下載 | 1 積分
- 7802.11_Wireless_Networks
- 4.17 MB | 12次下載 | 免費
- 8蘋果iphone 11電路原理圖
- 4.98 MB | 6次下載 | 2 積分
總榜
- 1matlab軟件下載入口
- 未知 | 935127次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計
- 1.48MB | 420064次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233089次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191390次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183342次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81588次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73815次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65989次下載 | 10 積分
評論