資料介紹
In recent years, multiple-input multiple-output (MIMO) wireless technologies have captured a
lot of research interest, given the capacity increase achievable with such schemes [1, 2]. On
the downlink, MIMO exploits multiple antennas at both the base station transmitter and the user terminal receiver. In the transmitter, the highspeed data stream intended for the user is encoded in time and space across multiple transmit antennas. In doing so, the same carrier (or spectral resource) is reused at each antenna. Signal processing is then used to decode the composite signals received at the mobile user’s terminal.
The spatial antenna processing at the terminal is able to unravel the effects of complex multipath scattering, and fundamentally provides access to parallel independent propagation paths between the base station and the user. Thus, instead of having access to a single data pipe, as with conventional wireless system design, a wireless system exploiting MIMO technology is able to capitalize on the presence of multiple parallel pipes, improving both the data rate and system capacity. MIMO has now reached a certain maturity, and is being investigated in the Third Generation Partnership Projects (3GPP and 3GPP2) for the evolution of the Universal Mobile Telecommunications System (UMTS) and cdma2000 systems, respectively.
Another technology that has been considered by the industry for 3G systems evolution is
orthogonal frequency-division multiplexing (OFDM). The Wireless World Research Forum
(WWRF) considers OFDM the most important technology for a future public cellular radio access technology [3]. Several wireless networking (e.g., IEEE 802.11 and 802.16) and wireless
broadcasting systems (e.g. DVB-T, DAB) have already been developed using OFDM technology and are now available in mature commercial
products.
Since data is multiplexed on many narrowband subcarriers, OFDM is very robust to typical
multipath fading (i.e., frequency-selective) channels. Furthermore, the subcarriers can easily be generated at the transmitter and recovered at the receiver, using highly efficient digital signal processing based on fast Fourier transform (FFT).
lot of research interest, given the capacity increase achievable with such schemes [1, 2]. On
the downlink, MIMO exploits multiple antennas at both the base station transmitter and the user terminal receiver. In the transmitter, the highspeed data stream intended for the user is encoded in time and space across multiple transmit antennas. In doing so, the same carrier (or spectral resource) is reused at each antenna. Signal processing is then used to decode the composite signals received at the mobile user’s terminal.
The spatial antenna processing at the terminal is able to unravel the effects of complex multipath scattering, and fundamentally provides access to parallel independent propagation paths between the base station and the user. Thus, instead of having access to a single data pipe, as with conventional wireless system design, a wireless system exploiting MIMO technology is able to capitalize on the presence of multiple parallel pipes, improving both the data rate and system capacity. MIMO has now reached a certain maturity, and is being investigated in the Third Generation Partnership Projects (3GPP and 3GPP2) for the evolution of the Universal Mobile Telecommunications System (UMTS) and cdma2000 systems, respectively.
Another technology that has been considered by the industry for 3G systems evolution is
orthogonal frequency-division multiplexing (OFDM). The Wireless World Research Forum
(WWRF) considers OFDM the most important technology for a future public cellular radio access technology [3]. Several wireless networking (e.g., IEEE 802.11 and 802.16) and wireless
broadcasting systems (e.g. DVB-T, DAB) have already been developed using OFDM technology and are now available in mature commercial
products.
Since data is multiplexed on many narrowband subcarriers, OFDM is very robust to typical
multipath fading (i.e., frequency-selective) channels. Furthermore, the subcarriers can easily be generated at the transmitter and recovered at the receiver, using highly efficient digital signal processing based on fast Fourier transform (FFT).
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 基于FPGA的MIMO-OFDM基帶系統(tǒng)發(fā)射機(jī)的設(shè)計(jì)
- MIMO-OFDM無(wú)線通信技術(shù)(Matlab代碼實(shí)現(xiàn))
- 對(duì)MIMO-OFDM無(wú)線系統(tǒng)的誤碼率評(píng)估 3次下載
- 802.16寬帶無(wú)線城域網(wǎng)媒體接入控制協(xié)議 35次下載
- 城域網(wǎng)建設(shè)主要技術(shù)應(yīng)用 42次下載
- 新型城域網(wǎng)的技術(shù)選擇 34次下載
- MIMO-OFDM無(wú)線通信系統(tǒng)的設(shè)計(jì)與仿真 163次下載
- WiMAX無(wú)線城域網(wǎng)的應(yīng)用研究
- 基于塊調(diào)制的MIMO-OFDM系統(tǒng)
- 基于MIMO-OFDM系統(tǒng)的低復(fù)雜度LS改進(jìn)算法
- MIMO-OFDM系統(tǒng)中具有QoS保證的動(dòng)態(tài)資源分配
- 降低MIMO-OFDM系統(tǒng)PAPR的一種改進(jìn)方法
- 基于城域網(wǎng)的SAN承載技術(shù)探討
- 城域網(wǎng)地址規(guī)劃
- MIMO-OFDM技術(shù)
- 下一代射頻芯片工藝路在何方? 1476次閱讀
- 下一代硅光子技術(shù)會(huì)是什么樣子? 671次閱讀
- 下一代航空航天和國(guó)防系統(tǒng)的多功能設(shè)計(jì) 938次閱讀
- 下一代軍事通信挑戰(zhàn) 1038次閱讀
- 適用于分布式MIMO系統(tǒng)中的時(shí)間頻率同步算法研究 2827次閱讀
- MIMO-OFDM的工作原理及關(guān)鍵技術(shù)分析 1.6w次閱讀
- 采用能量檢測(cè)法實(shí)現(xiàn)OFDM系統(tǒng)的檢測(cè) 3576次閱讀
- OTN to CO助力運(yùn)營(yíng)商打造面向未來(lái)最佳體驗(yàn)城域承載網(wǎng) 2126次閱讀
- 城域網(wǎng)和廣域網(wǎng)的區(qū)別及聯(lián)系 2.4w次閱讀
- ofdm關(guān)鍵技術(shù)及應(yīng)用 2w次閱讀
- 下一代LTE基站發(fā)射機(jī)的RF IC集成設(shè)計(jì)策略解析 855次閱讀
- WiMAX:無(wú)線城域網(wǎng)的新銳 1031次閱讀
- 下一代平板顯示:OLED、MICRO LED、QLED誰(shuí)將勝出? 1693次閱讀
- 透視802.11ax:解讀下一代無(wú)線網(wǎng)路標(biāo)準(zhǔn) 5660次閱讀
- OTN:城域網(wǎng)提速的最佳選擇 3106次閱讀
下載排行
本周
- 1Eurotherm TKS Temperature 用戶手冊(cè)
- 1.46 MB | 2次下載 | 免費(fèi)
- 2無(wú)線系統(tǒng)中天線和RF元件電磁建模
- 7.48 MB | 1次下載 | 4 積分
- 3納祥科技NX6806中文規(guī)格書(shū),8位AD和DA單片機(jī)拓展,國(guó)產(chǎn)替代PCF8591
- 3.04 MB | 1次下載 | 免費(fèi)
- 4藍(lán)牙無(wú)線遙控小車
- 10.49 MB | 1次下載 | 2 積分
- 5Multisim模擬電路仿真教程
- 1.93 MB | 1次下載 | 3 積分
- 6MNGate系列智能網(wǎng)關(guān)詳細(xì)使用手冊(cè)
- 11.62 MB | 次下載 | 2 積分
- 7PC3302 7V 1.5A 1.25MHz升壓10白光LED驅(qū)動(dòng)器英文手冊(cè)
- 1.04 MB | 次下載 | 免費(fèi)
- 8FCO-3C-WT|超寬溫晶體振蕩器
- 4.87 MB | 次下載 | 免費(fèi)
本月
- 1晶體三極管的電流放大作用詳細(xì)說(shuō)明
- 0.77 MB | 32次下載 | 2 積分
- 2Python從入門(mén)到精通背記手冊(cè)
- 18.77 MB | 25次下載 | 1 積分
- 3雙極型三極管放大電路的三種基本組態(tài)的學(xué)習(xí)課件免費(fèi)下載
- 4.03 MB | 23次下載 | 1 積分
- 4多級(jí)放大電路的學(xué)習(xí)課件免費(fèi)下載
- 1.81 MB | 21次下載 | 2 積分
- 5九陽(yáng)豆?jié){機(jī)高清原理圖
- 2.47 MB | 16次下載 | 1 積分
- 61875功放原理圖
- 0.04 MB | 11次下載 | 免費(fèi)
- 7SW6306V AACC四口多協(xié)議升降壓移動(dòng)電源SOC中文手冊(cè)
- 1.20 MB | 10次下載 | 1 積分
- 8東芝彩色電視機(jī)29SF6C維修說(shuō)明書(shū)
- 4.86 MB | 9次下載 | 1 積分
總榜
- 1matlab軟件下載入口
- 未知 | 935127次下載 | 10 積分
- 2開(kāi)源硬件-PMP21529.1-4 開(kāi)關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計(jì)
- 1.48MB | 420063次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233089次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191382次下載 | 10 積分
- 5十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183337次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81585次下載 | 10 積分
- 7Keil工具M(jìn)DK-Arm免費(fèi)下載
- 0.02 MB | 73814次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評(píng)論