99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

基于神經(jīng)網(wǎng)絡的新算法成功模擬量子系統(tǒng)的“穩(wěn)態(tài)”!

DPVg_AI_era ? 來源:YXQ ? 2019-07-08 15:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,研究人員利用基于神經(jīng)網(wǎng)絡的新算法,成功模擬了量子系統(tǒng)的“穩(wěn)態(tài)”。利用神經(jīng)網(wǎng)絡估計并模擬波函數(shù)和密度矩陣,大大降低了計算復雜度和算力需求,為解決量子科學和信息領域的幾個突出問題打下了基礎。

即使是在日常生活中,大自然也受到量子物理定律的支配。這些定律解釋了生活中的常見現(xiàn)象,如光、聲、熱,甚至是臺球桌上球的運動軌跡。這些日常都是符合大眾視覺和想象的,我們都已經(jīng)習以為常。但是當涉及到大量相互作用的粒子時,量子物理定律所解釋的現(xiàn)象,大部分和我們的直覺相違背。

為了研究由大量粒子組成的量子系統(tǒng),物理學家必須首先能夠模擬這類系統(tǒng)。解釋量子系統(tǒng)內(nèi)部運行機制的方程可以由超級計算機解出,但是,雖然摩爾定律預測,計算機的處理能力每兩年翻一番,但這與解決量子物理面臨的挑戰(zhàn)所需的計算能力相去甚遠。

造成這個困難的原因是,預測量子系統(tǒng)的本質(zhì)是非常復雜的,要想跟上量子系統(tǒng)規(guī)模的增長,計算力需要呈指數(shù)增長。這是一項“本質(zhì)上極其復雜”的任務。EPFL納米系統(tǒng)理論物理實驗室負責人Vincenzo Savona教授表示。

“對于開放式量子系統(tǒng),情況會變得更加復雜,因為系統(tǒng)會受到周圍環(huán)境的干擾,”薩沃納補充道。非常需要有效模擬開放量子系統(tǒng)的工具,因為量子科學和技術的大多數(shù)現(xiàn)代實驗平臺都是開放系統(tǒng),物理學家一直在尋找新的方法來對這些系統(tǒng)模擬和測試。

近日,洛桑聯(lián)邦理工學院(EPFL)的研究人員采用神經(jīng)網(wǎng)絡模擬量子系統(tǒng)的新計算方法,已經(jīng)取得了重大進展。相關研究成果已在“物理評論快報”的三篇論文中發(fā)表。

論文摘要:

對開放量子系統(tǒng)性質(zhì)的模擬,是解決量子科學和信息領域的幾個突出問題的前提。這個問題的難度在于系統(tǒng)的密度矩陣會隨著系統(tǒng)規(guī)模的增大呈指數(shù)級增長。本文提出一種變分方法,利用變分蒙特卡羅方法和密度矩陣的神經(jīng)網(wǎng)絡,有效模擬了馬爾可夫開放量子系統(tǒng)的非平衡穩(wěn)態(tài)。

利用神經(jīng)網(wǎng)絡(右)找到“開放”量子系統(tǒng)的靜止穩(wěn)態(tài)(左)

在開放量子系統(tǒng)中,研究人員的目標是找到“穩(wěn)態(tài)”,即不隨時間變化的量子態(tài)。確定這種狀態(tài)的形式理論已經(jīng)存在。當系統(tǒng)包含多個量子粒子時,計算上可能會出現(xiàn)困難。要描述整個自旋系統(tǒng),必須確定2^N種可能的狀態(tài)。僅僅存儲20次旋轉(zhuǎn)的這些信息需要大約8千兆字節(jié)的RAM,并且每增加一次旋轉(zhuǎn),所需算力就會翻倍。在開放系統(tǒng)中處理相同數(shù)量的旋轉(zhuǎn)甚至更難,因為旋轉(zhuǎn)必須用“密度矩陣”ρ來描述。這個矩陣規(guī)模極大,元素數(shù)量為2^N×2^N個。

神經(jīng)網(wǎng)絡ansatz對量子系統(tǒng)密度矩陣的圖形表示

神經(jīng)網(wǎng)絡的優(yōu)勢在于,它可以用很少的信息來近似模擬波函數(shù)或密度矩陣。神經(jīng)網(wǎng)絡就像一個數(shù)學“盒子”,將一串數(shù)字(矢量或張量)作為輸入,并輸出另一個字符串。對于模擬N量子系統(tǒng)的特定任務,神經(jīng)網(wǎng)絡函數(shù)可以作為波函數(shù)的“猜測”,將N個對象的狀態(tài)作為輸入。然后,研究人員讓網(wǎng)絡從實際或模擬數(shù)據(jù)進行“學習”,或?qū)⒉ê瘮?shù)決定的物理量進行最小化,來優(yōu)化函數(shù)參數(shù)。一旦獲得了正確的猜測,就可用于計算其他物理屬性,其參數(shù)數(shù)量遠遠少于2^N 。

“這個研究基本上就是將神經(jīng)網(wǎng)絡和機器學習的進步,與量子蒙特卡羅工具結(jié)合起來,”Savona說,他說的“量子蒙特卡羅工具”指的是物理學家用來研究復雜量子系統(tǒng)的大型算法工具包??茖W家訓練了一個神經(jīng)網(wǎng)絡來同時表示多個量子系統(tǒng),可以通過其環(huán)境的影響投射的許多量子態(tài)。

穩(wěn)態(tài)自旋結(jié)構(gòu)因子作為α=β的函數(shù)計算為3×3點陣,k = 0(上圖)和k =(2π/ 3,0)(下圖)

這一基于神經(jīng)網(wǎng)絡的方法能夠讓物理學家預測相當大小的量子系統(tǒng)的性質(zhì)?!斑@種新算法解決了開放式量子系統(tǒng)的問題,具有多功能性和擴展的潛力,”薩沃納說。該方法將成為研究復雜量子系統(tǒng)的首選工具,而且未來可以產(chǎn)生更多工具,比如評估噪聲干擾對量子硬件系統(tǒng)的影響。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:算法巨大突破!AI神經(jīng)網(wǎng)絡能模擬量子系統(tǒng)了

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學模型的推導,得出轉(zhuǎn)角:與三相相電壓之間存在映射關系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡來實現(xiàn)轉(zhuǎn)角預測,并采用改進遺傳算法來訓練網(wǎng)絡結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡專家系統(tǒng)在電機故障診斷中的應用

    的診斷誤差。仿真結(jié)果驗證了該算法的有效性。 純分享帖,需要者可點擊附件免費獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡專家系統(tǒng)在電機故障診斷中的應用.pdf【免責聲明】本文系網(wǎng)絡轉(zhuǎn)載,版權歸原作
    發(fā)表于 06-16 22:09

    BP神經(jīng)網(wǎng)絡網(wǎng)絡結(jié)構(gòu)設計原則

    BP(back propagation)神經(jīng)網(wǎng)絡是一種按照誤差逆向傳播算法訓練的多層前饋神經(jīng)網(wǎng)絡,其網(wǎng)絡結(jié)構(gòu)設計原則主要基于以下幾個方面: 一、層次結(jié)構(gòu) 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?746次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡權重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡在圖像識別中的應用

    傳播神經(jīng)網(wǎng)絡(Back Propagation Neural Network),是一種多層前饋神經(jīng)網(wǎng)絡,主要通過反向傳播算法進行學習。它通常包括輸入層、一個或多個隱藏層和輸出層。BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:12 ?681次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡的核心,用于提取圖像中的局部特征。 定義卷積核:卷積核是一個小的矩陣,用于在輸入圖像上滑動,提取局部特征。 滑動窗口:將卷積核在輸入圖像上滑動,每次滑動一個像素點。 計算卷積:將卷積核與輸入圖像
    的頭像 發(fā)表于 11-15 14:47 ?1785次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    LSTM神經(jīng)網(wǎng)絡的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 10:05 ?1632次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準、閉環(huán)反饋等應用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>101

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡算法中,模型的訓練離不開大量的數(shù)據(jù)集,數(shù)據(jù)集用于
    發(fā)表于 10-10 09:28

    matlab 神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14