近十年來,掃描探針、電子顯微鏡和光學(xué)顯微鏡的光譜成像方法發(fā)展迅速,導(dǎo)致了大型多維數(shù)據(jù)集的興起。在許多情況下,將高光譜數(shù)據(jù)降維到較低維度的材料特征參數(shù),要依賴功能擬合,雖然擬合函數(shù)的近似形式是已知的,但函數(shù)的參數(shù)卻是需要人為確定的。然而,通過迭代方法實現(xiàn)噪聲數(shù)據(jù)的功能擬合(如最小二乘梯度下降),常常會出現(xiàn)虛假結(jié)果。
來自美國橡樹林國家實驗室的Stephen Jesse領(lǐng)導(dǎo)的團隊,提出了一種新的方法,可用來逆向解決問題,可從基于光譜成像數(shù)據(jù)的最小二乘擬合中提取物理模型參數(shù),并能通過深度學(xué)習(xí)測定先驗參數(shù)而增強提取能力。他們將這種方法應(yīng)用于從壓電響應(yīng)力顯微鏡數(shù)據(jù)中提取簡諧振子參數(shù),并證明了通過結(jié)合使用深度神經(jīng)網(wǎng)絡(luò)和最小二乘擬合,可以探測比傳統(tǒng)方法低一個數(shù)量級的信號響應(yīng),接近激發(fā)信號的熱限制。作為模型系統(tǒng),他們演示了從層狀鐵電化合物的帶激發(fā)壓電響應(yīng)力顯微鏡成像中,提取阻尼簡諧振子參數(shù)。這種使用深度神經(jīng)網(wǎng)絡(luò)的方法是通用的,并且在正向和反向情況下都顯示出它們作為函數(shù)近似器的效用,且它們在嘈雜的環(huán)境中工作良好。
-
探針
+關(guān)注
關(guān)注
4文章
219瀏覽量
21003 -
深度神經(jīng)網(wǎng)絡(luò)
+關(guān)注
關(guān)注
0文章
62瀏覽量
4703
原文標(biāo)題:npj: 電鏡中的垃圾變黃金—深度神經(jīng)網(wǎng)絡(luò)
文章出處:【微信號:zhishexueshuquan,微信公眾號:知社學(xué)術(shù)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較
什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法
BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系
深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)
人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架
卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較
深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型
卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法
RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別
LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別
Moku人工神經(jīng)網(wǎng)絡(luò)101

評論