99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人類可以不受環(huán)境影響的識別人臉,那么計算機也可以嗎?

DPVg_AI_era ? 來源:lq ? 2019-05-05 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

眾所周知,人臉識別在攝像頭無法捕捉到完整面部圖像的情況下很難獲得理想的效果。最近布拉德福德大學(xué)的研究人員在不完整面部識別方面獲得了突破性進展,實驗表明,掃描整個面部的3/4、甚至1/2的識別準(zhǔn)確率能夠達到100%!

基于計算機的人臉識別已經(jīng)成為一種成熟且可靠的機制,實際上已被應(yīng)用于許多訪問控制場景,不過目前面部識別或認(rèn)證,主要使用全正臉面部圖像的“完美”數(shù)據(jù)來執(zhí)行。但實際上,有許多情況下比如閉路電視攝像機往往只能拍到臉的一側(cè),或者如果被拍攝者戴了帽子、口罩等遮擋物,就無法獲得完整的正臉。因此,使用不完整面部數(shù)據(jù)的面部識別是一個亟待開發(fā)的研究領(lǐng)域。

來自布拉德福德大學(xué)的研究團隊的最新研究在不完整面部識別方面,取得了突破性進展,實驗使用最先進的基于卷積神經(jīng)網(wǎng)絡(luò)的架構(gòu)以及預(yù)先訓(xùn)練的VGG-Face模型,使用余弦相似度和線性支持向量機來測試識別率。團隊在兩個公開可用的數(shù)據(jù)集(受控的巴西FEI和不受控制的LFW)上進行了實驗。

實驗表明,掃描整個面部的3/4、甚至1/2的識別準(zhǔn)確率能夠達到100%!除此之外,團隊還研究了面部的某個獨立的部位,比如鼻子、臉頰、前額或嘴巴的識別率,以及圖像的旋轉(zhuǎn)和縮放對面部識別主體的影響。結(jié)果發(fā)現(xiàn),如果只針對面部的某個獨立的部位,比如鼻子、臉頰、前額或嘴巴,識別率總是相對較低。

據(jù)悉,這是第一個使用機器學(xué)習(xí)來測試面部不同部位識別率的研究,論文已發(fā)表在Future Generation Computer Systems上。下面新智元對本次實驗進行介紹。

人類可以不受環(huán)境影響的識別人臉,那么計算機也可以嗎?

面部是人類生命中視覺系統(tǒng)中繪制得最多的圖片,所以大部分人類擁有卓越的面部識別能力。一般來說,我們不需要像面部識別AI那樣必須正視別人的正臉才能識別出對方,通常對于我們只要一瞥即可分辨。

普遍認(rèn)為大腦通過記住重要的細(xì)節(jié),例如與眼睛,鼻子,前額,臉頰和嘴巴相對應(yīng)的關(guān)鍵特征的形狀和顏色,對面部進行區(qū)分。此外,人類大腦可以應(yīng)對不同光線環(huán)境下、不同面部表情,以及遠(yuǎn)處面部的顯著變化。

然而,與此相反,任何在光線、表情、姿勢和即眼鏡或胡子等等的變化,都可能對計算機的識別率產(chǎn)生巨大影響。不過,因為計算機處理海量數(shù)據(jù)的能力不斷提高,可以認(rèn)為機器算法(例如CNN)至少在面部匹配方面擁有優(yōu)異的表現(xiàn)。

順著這個邏輯,研究團隊使用有遮擋的不完整人臉照片作為測試集,下面是一個測試集的示例圖片,以及計算機對不完整人臉照片的識別過程。

示例圖片

識別過程

使用CNN和VGG-Face,利用兩個分類器進行不完整人臉的識別

團隊主要研究面部的不同部分如何有利于識別,以及在機器學(xué)習(xí)場景中如何在對面部照片進行不同程度旋轉(zhuǎn)、縮放的識別。實驗使用基于CNN的架構(gòu)以及預(yù)訓(xùn)練的VGG-Face模型來提取特征。然后使用兩個分類器,即余弦相似度(CS)和線性SVM來測試識別率。下圖表現(xiàn)了特征提取步驟的概述:

遮擋臉部的示例圖片

基于VGGF的特征提取過程

VGG-Face模型

目前最流行和廣泛應(yīng)用于人臉識別的是VGGF模型,由Oxford Visual Geometry Group開發(fā)。該模型在一個超過2.6 K個體的2.6M面部圖像的巨大數(shù)據(jù)集上進行訓(xùn)練。

在VGGF中,其中13層是卷積網(wǎng)絡(luò),其他是ReLU、pooling的混合體,最后一層是softmax。

13個卷積層

為了確定VGGF模型中用于面部特征提取的最佳層,通常必須進行一些試驗和錯誤實驗。在本實驗中,團隊發(fā)現(xiàn)最好的結(jié)果來自第34層。值得注意的是,該層是完全連接的層,位于神經(jīng)網(wǎng)絡(luò)的末端,這意味著提取的特征代表代表了全臉。

特征分類:為什么使用余弦相似度和線性SVM

本次實驗中,研究團隊使用了余弦相似度(CS)和線性SVM分類器。做出這樣的選擇基于兩個原因:首先,團隊測試了其他分類器后發(fā)現(xiàn)CS和線性SVM的效果最好;其次,通過實驗和分析,團隊發(fā)現(xiàn)這兩個分類器能夠更準(zhǔn)確地分離數(shù)據(jù)。

余弦相似度

兩個向量間的余弦值可以通過使用歐幾里得點積公式求出:

給定兩個屬性向量, A 和B,其余弦相似性θ由點積和向量長度給出,如下所示:

這里的Ai和Bi分別代表向量A和B的各分量。

本次實驗需要計算CS以通過使用Eqs找到測試圖像和訓(xùn)練圖像之間的最小距離。如圖8所示:

線性SVM

SVM是一個二元分類算法,線性分類和非線性分類都支持。經(jīng)過演進,現(xiàn)在也可以支持多元分類,同時經(jīng)過擴展,也能應(yīng)用于回歸問題。在本實驗中,研究團隊對兩種SVM都進行了測試,發(fā)現(xiàn)當(dāng)使用部分面部作為測試集的時候,線性SVM能夠獲得更好的效果。

例如,對于右臉頰,線性SVM的識別準(zhǔn)確率達到了24.44%,而具有徑向基函數(shù)的非線性SVM的識別率僅為2.77%。

遮掉半張臉,準(zhǔn)確率也能高達100%!

這項工作提供了一組全面的實驗,使用面部的不同部分進行面部識別。

利用了兩個流行的人臉數(shù)據(jù)集的人臉圖像,即FEI和LFW數(shù)據(jù)集。使用級聯(lián)物體檢測器對兩個數(shù)據(jù)庫中的所有圖像進行裁剪以盡可能地去除背景,以便提取面部和內(nèi)部面部特征。但是,對于某些具有非常復(fù)雜背景的圖像,如LFW數(shù)據(jù)庫的情況,作者手動裁剪這些面部。

在這項工作中,已經(jīng)進行了許多遮擋設(shè)置,以驗證該方法可以處理正常和遮擋的面部識別任務(wù)。為此,進行了兩組主要的實驗:一組不使用局部,旋轉(zhuǎn)和縮放的面部作為訓(xùn)練面部數(shù)據(jù)的一部分,另一部分使用部分,旋轉(zhuǎn)和縮放的面部作為訓(xùn)練的一部分。

在每種情況下,使用兩個分類器進行了14個涉及部分,旋轉(zhuǎn)和縮小人臉的子實驗。出于訓(xùn)練目的,使用了每個受試者70%的圖像,這些圖像也通過諸如填充和翻轉(zhuǎn)之類的操作來增強。在每種情況下,剩余的30%的圖像用于測試。

從FEI數(shù)據(jù)集中采樣面部數(shù)據(jù)

用于測試FEI數(shù)據(jù)集上識別率的面部部分

在FEI數(shù)據(jù)庫中使用基于面部部分的SVM和CS分類器的面部識別率 - 在訓(xùn)練中不使用/使用面部的面部部分

在FEI數(shù)據(jù)集上顯示面旋轉(zhuǎn)(10°到180°)

在FEI數(shù)據(jù)集上使用SVM和CS分類器的人臉識別率(基于訓(xùn)練集中沒有和有旋轉(zhuǎn)人臉圖片)

一個在FEI數(shù)據(jù)集中縮小(10%到90%)人臉的例子

利用SVM和CS分類器對FEI中縮小后的人臉進行快速識別

一些來自LFW數(shù)據(jù)集的人臉圖像樣本

來自LFW數(shù)據(jù)庫的面部部分樣本

在LFW數(shù)據(jù)集上,分別使用SVM和CS兩種分類器對訓(xùn)練中未使用/使用的人臉各部分進行識別

在LFW數(shù)據(jù)集上使用基于SVM和CS分類器的人臉旋轉(zhuǎn)的人臉識別率(在沒有和使用單個旋轉(zhuǎn)面作為訓(xùn)練數(shù)據(jù)的情況下)

在LFW數(shù)據(jù)庫上,基于SVM和CS分類器的圖像縮放識別率

使用CS進行正確匹配的結(jié)果,對于嘴的部分

使用CS測量的錯誤匹配的結(jié)果,對于嘴的部分

正確匹配的結(jié)果使用CS測量,為右臉頰

應(yīng)用前景

研究團隊負(fù)責(zé)人Hassan Ugail教授表示這個結(jié)果展示了不完整面部識別的美好前景:“現(xiàn)在已經(jīng)證明,可以從僅顯示部分臉部的圖像中,獲得非常準(zhǔn)確的面部識別率,并且已經(jīng)確定哪些部分的識別準(zhǔn)確率更高,這為該技術(shù)應(yīng)用于安防或預(yù)防犯罪等方面,開辟了更大的可能性?!?/p>

不過Hassan Ugail教授還表示,目前實驗還需要在更大的數(shù)據(jù)集上進行驗證。顯然,將來很可能用于面部識別的圖像數(shù)據(jù)庫也需要包含不完整面部的圖像。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:鬼都藏不住,人臉識別新突破!就算遮住半張臉也能100%被識別

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    自動化計算機的功能與用途

    工業(yè)自動化是指利用自動化計算機來控制工業(yè)環(huán)境中的流程、機器人和機械,以制造產(chǎn)品或其部件。工業(yè)自動化的目的是提高生產(chǎn)率、增加靈活性,并提升制造過程的質(zhì)量。工業(yè)自動化在汽車制造中體現(xiàn)得最為明顯,其中許多
    的頭像 發(fā)表于 07-15 16:32 ?136次閱讀
    自動化<b class='flag-5'>計算機</b>的功能與用途

    工業(yè)計算機與商用計算機的區(qū)別有哪些

    工業(yè)計算機是一種專為工廠和工業(yè)環(huán)境設(shè)計的計算系統(tǒng),具有高可靠性和穩(wěn)定性,能夠應(yīng)對惡劣環(huán)境下的自動化、制造和機器人操作。其特點包括無風(fēng)扇散熱技術(shù)、無電纜連接和防塵防水設(shè)計,使其在各種工業(yè)
    的頭像 發(fā)表于 07-10 16:36 ?186次閱讀
    工業(yè)<b class='flag-5'>計算機</b>與商用<b class='flag-5'>計算機</b>的區(qū)別有哪些

    基于LockAI視覺識別模塊:C++人臉識別

    是實現(xiàn)人臉識別的常用方法: 深度學(xué)習(xí)方法:現(xiàn)代的人臉識別系統(tǒng)大多采用深度學(xué)習(xí)方法,并結(jié)合大規(guī)模人臉數(shù)據(jù)庫和高性能
    發(fā)表于 07-01 12:01

    【幸狐Omni3576邊緣計算套件試用體驗】人臉識別

    【幸狐Omni3576邊緣計算套件試用體驗】人臉識別 本文介紹了幸狐 Omni3576 邊緣計算套件結(jié)合 Retinaface 算法實現(xiàn)人臉
    發(fā)表于 04-01 21:46

    工業(yè)中使用哪種計算機?

    在工業(yè)環(huán)境中,工控機被廣泛使用。這些計算機的設(shè)計可承受極端溫度、灰塵和振動等惡劣條件。它們比標(biāo)準(zhǔn)消費類計算機更耐用、更可靠。工業(yè)計算機可控制機器、監(jiān)控流程并實時收集數(shù)據(jù)。其堅固的結(jié)構(gòu)和
    的頭像 發(fā)表于 11-29 14:07 ?716次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計算機</b>?

    量子計算機與普通計算機工作原理的區(qū)別

    ? 本文介紹了量子計算機與普通計算機工作原理的區(qū)別。 量子計算是一個新興的研究領(lǐng)域,科學(xué)家們利用量子力學(xué),制造出具有革命性能力的計算機。雖然現(xiàn)在的量子
    的頭像 發(fā)表于 11-24 11:00 ?1508次閱讀
    量子<b class='flag-5'>計算機</b>與普通<b class='flag-5'>計算機</b>工作原理的區(qū)別

    ROM對計算機性能的影響

    是一種非易失性存儲器,即使在斷電的情況下能保持?jǐn)?shù)據(jù)不丟失。它通常用于存儲固件,這些固件是計算機啟動和運行操作系統(tǒng)所必需的。ROM的內(nèi)容在制造過程中被寫入,并且通常不能被用戶更改。 ROM的類型 PROM(可編程ROM) :用戶可以
    的頭像 發(fā)表于 11-04 10:31 ?1224次閱讀

    工業(yè)中使用哪種類型的計算機

    工業(yè)計算機:穩(wěn)健應(yīng)用的基本解決方案各行各業(yè)對強大計算解決方案的需求日益增長,導(dǎo)致人們高度依賴工業(yè)計算機。這些專用系統(tǒng)專為典型消費級電腦無法適應(yīng)的環(huán)境而設(shè)計。從制造業(yè)到建筑業(yè),工業(yè)
    的頭像 發(fā)表于 10-22 17:10 ?698次閱讀
    工業(yè)中使用哪種類型的<b class='flag-5'>計算機</b>?

    計算機接口位于什么之間

    地傳輸。計算機接口可以分為內(nèi)部接口和外部接口兩大類。 內(nèi)部接口位于計算機內(nèi)部各個部件之間,如CPU、內(nèi)存、主板、硬盤、顯卡等。外部接口則位于計算機與外部設(shè)備之間,如鍵盤、鼠標(biāo)、顯示器、
    的頭像 發(fā)表于 10-14 14:02 ?1326次閱讀

    計算機接口中可以直接進行插拔操作的是

    計算機接口中,可以直接進行插拔操作的接口類型通常包括以下幾種: USB接口 特點 :USB(Universal Serial Bus)接口是最常見的可以直接進行插拔的接口類型之一。它支持熱插拔功能
    的頭像 發(fā)表于 10-14 14:00 ?2051次閱讀

    深度識別人臉識別有什么重要作用嗎

    安全監(jiān)控領(lǐng)域,深度學(xué)習(xí)人臉識別技術(shù)可以用于實時監(jiān)控和分析視頻流,以識別特定的個人或行為模式。這對于防止犯罪、保護財產(chǎn)和人員安全至關(guān)重要。 2. 身份驗證 在金融、政府和企業(yè)領(lǐng)域,深度學(xué)
    的頭像 發(fā)表于 09-10 14:55 ?1147次閱讀

    計算機存儲器的分類及其區(qū)別

    計算機存儲器是計算機系統(tǒng)中不可或缺的重要部分,用于存放程序和數(shù)據(jù)。隨著科技的進步,存儲器的種類越來越多,功能和性能日益豐富。一般來說,計算機存儲器
    的頭像 發(fā)表于 09-05 10:40 ?4026次閱讀

    簡述計算機總線的分類

    計算機總線作為計算機系統(tǒng)中連接各個功能部件的公共通信干線,其結(jié)構(gòu)和分類對于理解計算機硬件系統(tǒng)的工作原理至關(guān)重要。以下是對計算機總線結(jié)構(gòu)和分類的詳細(xì)闡述,內(nèi)容將涵蓋總線的基本概念、內(nèi)部結(jié)
    的頭像 發(fā)表于 08-26 16:23 ?5192次閱讀

    晶體管計算機和電子管計算機有什么區(qū)別

    晶體管計算機和電子管計算機作為計算機發(fā)展史上的兩個重要階段,它們在多個方面存在顯著的區(qū)別。以下是對這兩類計算機在硬件、性能、應(yīng)用以及技術(shù)發(fā)展等方面區(qū)別的詳細(xì)闡述。
    的頭像 發(fā)表于 08-23 15:28 ?3624次閱讀

    計算機視覺有哪些優(yōu)缺點

    計算機視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,帶來了諸多優(yōu)勢,但同時
    的頭像 發(fā)表于 08-14 09:49 ?2061次閱讀