99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

1024塊TPU在燃燒!將BERT預(yù)訓(xùn)練模型的訓(xùn)練時(shí)長(zhǎng)從3天縮減到了76分鐘

電子工程師 ? 來(lái)源:lp ? 2019-04-04 16:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

“Jeff Dean稱贊,TensorFlow官方推特支持,BERT目前工業(yè)界最耗時(shí)的應(yīng)用,計(jì)算量遠(yuǎn)高于ImageNet。我們將BERT的訓(xùn)練時(shí)間從三天縮短到了一小時(shí)多?!盪C Berkeley大學(xué)在讀博士尤洋如是說(shuō)道。

近日,來(lái)自Google、UC Berkeley、UCLA研究團(tuán)隊(duì)再度合作,成功燃燒1024塊TPU,將BERT預(yù)訓(xùn)練模型的訓(xùn)練時(shí)長(zhǎng)從3天縮減到了76分鐘。batch size技術(shù)是加速神經(jīng)網(wǎng)絡(luò)訓(xùn)練的關(guān)鍵,在“Reducing BERT Pre-Training Time from 3 Days to 76 Minutes”這篇論文中,作者提出了LAMB優(yōu)化器,它支持自適應(yīng)元素更新和分層校正。

論文傳送門:https://arxiv.org/pdf/1904.00962.pdf

論文摘要:batch size增加到很大時(shí)的模型訓(xùn)練是加速大型分布式系統(tǒng)中深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練的關(guān)鍵。但是,這種模型訓(xùn)練很難,因?yàn)樗鼤?huì)導(dǎo)致一種泛化差距。直接優(yōu)化通常會(huì)導(dǎo)致測(cè)試集上的準(zhǔn)確性下降。

BERT是一種先進(jìn)的深度學(xué)習(xí)模型,它建立在語(yǔ)義理解的深度雙向轉(zhuǎn)換器上。當(dāng)我們?cè)黾觔atch size的大?。ㄈ绯^(guò)8192)時(shí),此前的模型訓(xùn)練技巧在BERT上表現(xiàn)得并不好。BERT預(yù)訓(xùn)練也需要很長(zhǎng)時(shí)間才能完成,如在16個(gè)TPUv3上大約需要三天。

為了解決這個(gè)問(wèn)題,我們提出了LAMB優(yōu)化器,可將batch size擴(kuò)展到65536,且不會(huì)降低準(zhǔn)確率。LAMB是一個(gè)通用優(yōu)化器,batch size大小均使用,且除了學(xué)習(xí)率之外不需要?jiǎng)e的參數(shù)調(diào)整。

基線BERT-Large模型需要100萬(wàn)次迭代才能完成預(yù)訓(xùn)練,而batch size大小為65536/32768的LAMB僅需要8599次迭代。我們還將batch size進(jìn)行內(nèi)存限制,接近TPUv3 pod,結(jié)果可在76分鐘內(nèi)完成BERT訓(xùn)練。

據(jù)悉,該論文的一作是來(lái)自UC Berkeley計(jì)算機(jī)科學(xué)部的在讀博士尤洋,同時(shí)也是Google Brain的實(shí)習(xí)生。據(jù)公開(kāi)信息顯示,尤洋的導(dǎo)師是美國(guó)科學(xué)院與工程院院士,ACM/IEEE fellow,伯克利計(jì)算機(jī)系主任,以及首批中關(guān)村海外顧問(wèn)James Demmel教授。他當(dāng)前的研究重點(diǎn)是大規(guī)模深度學(xué)習(xí)訓(xùn)練算法的分布式優(yōu)化。2017年9月,尤洋等人的新算法以24分鐘完成ImageNet訓(xùn)練,刷新世界紀(jì)錄。

在此之前,他曾在英特爾實(shí)驗(yàn)室、微軟研究院、英偉達(dá)、IBM沃森研究中心等機(jī)構(gòu)實(shí)習(xí)。尤洋本科就讀于中國(guó)農(nóng)業(yè)大學(xué)計(jì)算機(jī)系,碩士保送清華大學(xué)計(jì)算機(jī)系,是一名杠杠的理工學(xué)霸!

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103622
  • TPU
    TPU
    +關(guān)注

    關(guān)注

    0

    文章

    154

    瀏覽量

    21201
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122794
  • 訓(xùn)練模型
    +關(guān)注

    關(guān)注

    1

    文章

    37

    瀏覽量

    3964

原文標(biāo)題:1024塊TPU在燃燒!BERT訓(xùn)練從3天縮短到76分鐘 | 技術(shù)頭條

文章出處:【微信號(hào):rgznai100,微信公眾號(hào):rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    用PaddleNLP為GPT-2模型制作FineWeb二進(jìn)制預(yù)訓(xùn)練數(shù)據(jù)集

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 《用PaddleNLP4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)》發(fā)布后收到讀者熱烈反響,很多讀者要求進(jìn)一步講解更多的技術(shù)細(xì)節(jié)。本文主要針對(duì)大語(yǔ)言
    的頭像 發(fā)表于 03-21 18:24 ?1684次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進(jìn)制<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>數(shù)據(jù)集

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過(guò)大,有無(wú)解決方案?
    發(fā)表于 03-11 07:18

    Open Model Zoo下載的FastSeg大型公共預(yù)訓(xùn)練模型,無(wú)法導(dǎo)入名稱是怎么回事?

    Open Model Zoo 下載的 FastSeg 大型公共預(yù)訓(xùn)練模型。 運(yùn)行 converter.py 以 FastSeg
    發(fā)表于 03-05 07:22

    用PaddleNLP4060單卡上實(shí)踐大模型預(yù)訓(xùn)練技術(shù)

    作者:算力魔方創(chuàng)始人/英特爾創(chuàng)新大使劉力 之前我們分享了《從零開(kāi)始訓(xùn)練一個(gè)大語(yǔ)言模型需要投資多少錢》,其中高昂的預(yù)訓(xùn)練費(fèi)用讓許多對(duì)大模型
    的頭像 發(fā)表于 02-19 16:10 ?999次閱讀
    用PaddleNLP<b class='flag-5'>在</b>4060單卡上實(shí)踐大<b class='flag-5'>模型</b><b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>技術(shù)

    模型訓(xùn)練框架(五)之Accelerate

    Hugging Face 的 Accelerate1是一個(gè)用于簡(jiǎn)化和加速深度學(xué)習(xí)模型訓(xùn)練的庫(kù),它支持多種硬件配置上進(jìn)行分布式訓(xùn)練,包括 CPU、GPU、
    的頭像 發(fā)表于 01-14 14:24 ?718次閱讀

    KerasHub統(tǒng)一、全面的預(yù)訓(xùn)練模型庫(kù)

    深度學(xué)習(xí)領(lǐng)域正在迅速發(fā)展,處理各種類型的任務(wù)中,預(yù)訓(xùn)練模型變得越來(lái)越重要。Keras 以其用戶友好型 API 和對(duì)易用性的重視而聞名,始終處于這一動(dòng)向的前沿。Keras 擁有專用的內(nèi)
    的頭像 發(fā)表于 12-20 10:32 ?501次閱讀

    GPU是如何訓(xùn)練AI大模型

    AI模型訓(xùn)練過(guò)程中,大量的計(jì)算工作集中矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長(zhǎng)的。接下來(lái),AI部落小編帶您了解GPU是如何
    的頭像 發(fā)表于 12-19 17:54 ?747次閱讀

    什么是大模型、大模型是怎么訓(xùn)練出來(lái)的及大模型作用

    ,基礎(chǔ)模型。 ? 大模型是一個(gè)簡(jiǎn)稱,完整的叫法,應(yīng)該是“人工智能預(yù)訓(xùn)練模型”。預(yù)
    的頭像 發(fā)表于 11-25 09:29 ?1.3w次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓(xùn)練</b>出來(lái)的及大<b class='flag-5'>模型</b>作用

    如何訓(xùn)練自己的LLM模型

    訓(xùn)練自己的大型語(yǔ)言模型(LLM)是一個(gè)復(fù)雜且資源密集的過(guò)程,涉及到大量的數(shù)據(jù)、計(jì)算資源和專業(yè)知識(shí)。以下是訓(xùn)練LLM模型的一般步驟,以及一些關(guān)鍵考慮因素: 定義目標(biāo)和需求 : 確定你的L
    的頭像 發(fā)表于 11-08 09:30 ?1523次閱讀

    Llama 3 模型訓(xùn)練技巧

    Llama 3 模型,假設(shè)是指一個(gè)先進(jìn)的人工智能模型,可能是一個(gè)虛構(gòu)的或者是一個(gè)特定領(lǐng)域的術(shù)語(yǔ)。 1. 數(shù)據(jù)預(yù)處理 數(shù)據(jù)是任何機(jī)器學(xué)習(xí)模型的基礎(chǔ)。
    的頭像 發(fā)表于 10-27 14:24 ?877次閱讀

    如何訓(xùn)練自己的AI大模型

    訓(xùn)練自己的AI大模型是一個(gè)復(fù)雜且耗時(shí)的過(guò)程,涉及多個(gè)關(guān)鍵步驟。以下是一個(gè)詳細(xì)的訓(xùn)練流程: 一、明確需求和目標(biāo) 首先,需要明確自己的需求和目標(biāo)。不同的任務(wù)和應(yīng)用領(lǐng)域需要不同類型的AI模型
    的頭像 發(fā)表于 10-23 15:07 ?4984次閱讀

    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)

    神經(jīng)網(wǎng)絡(luò),特別是預(yù)訓(xùn)練的基礎(chǔ)模型研究得到了廣泛的應(yīng)用,但其仍然主要依賴于大量樣本上的批量式訓(xùn)練
    的頭像 發(fā)表于 10-18 08:09 ?595次閱讀
    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:<b class='flag-5'>預(yù)</b><b class='flag-5'>訓(xùn)練</b>的基礎(chǔ)<b class='flag-5'>模型</b>下的持續(xù)學(xué)習(xí)

    如何訓(xùn)練ai大模型

    可靠的來(lái)源獲取數(shù)據(jù),如公開(kāi)數(shù)據(jù)集、內(nèi)部數(shù)據(jù)庫(kù)或第三方數(shù)據(jù)提供商。 2. 數(shù)據(jù)清洗 去除重復(fù)數(shù)據(jù) :確保數(shù)據(jù)集中沒(méi)有重復(fù)項(xiàng),以避免訓(xùn)練過(guò)程中引入冗余信息。 處理缺失值 :對(duì)于缺失的數(shù)據(jù),可以采取填充、刪除或插值等方法進(jìn)行處
    的頭像 發(fā)表于 10-17 18:17 ?2634次閱讀

    TPU v1到Trillium TPU,蘋果等科技公司使用谷歌TPU進(jìn)行AI計(jì)算

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)7月30日消息,蘋果公司周一一篇技術(shù)論文中表示,支撐其人工智能系統(tǒng)Apple Intelligence的兩個(gè)人工智能模型谷歌設(shè)計(jì)的云端芯片上進(jìn)行預(yù)
    的頭像 發(fā)表于 07-31 01:08 ?3955次閱讀

    蘋果揭示AI新動(dòng)向:Apple Intelligence模型谷歌云端芯片上預(yù)訓(xùn)練

    蘋果公司最新的技術(shù)論文中披露了一項(xiàng)重要信息,其全新的人工智能系統(tǒng)Apple Intelligence所依賴的模型并非傳統(tǒng)上大型科技公司首選的NVIDIA GPU,而是選擇了谷歌設(shè)計(jì)的云端芯片上進(jìn)行
    的頭像 發(fā)表于 07-30 15:00 ?849次閱讀