99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

微軟、中科大開(kāi)源基于深度高分辨表示學(xué)習(xí)的姿態(tài)估計(jì)算法

電子工程師 ? 來(lái)源:lp ? 2019-03-05 09:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

昨天arXiv出現(xiàn)了好幾篇被CVPR 2019接收的論文。

其中來(lái)自微軟和中國(guó)科技大學(xué)研究學(xué)者的論文《Deep High-Resolution Representation Learning for Human Pose Estimation》和相應(yīng)代碼甫一公布,立刻引起大家的關(guān)注,不到一天之內(nèi),github上已有將近50顆星。

今天就跟大家一起來(lái)品讀此文妙處。

該文作者信息:

該文為第一作者Ke Sun在微軟亞洲研究院實(shí)習(xí)期間發(fā)明的算法。

基本思想

作者觀察到,現(xiàn)有姿態(tài)估計(jì)算法中往往網(wǎng)絡(luò)會(huì)有先降低分辨率再恢復(fù)高分辨率的過(guò)程,比如下面的幾種典型網(wǎng)絡(luò)。

為便于表達(dá),在下面的a、b、c、d四幅圖中,同一水平線上的特征圖為相同分辨率,越向下分辨率越小,在最終的高分辨率特征圖heatmap中計(jì)算姿態(tài)估計(jì)的關(guān)鍵點(diǎn)。

Hourglass

Cascaded pyramid networks

Simple baseline

Combined with dilated convolutions

其中的網(wǎng)絡(luò)結(jié)構(gòu)說(shuō)明如下:

作者希望不要有這個(gè)分辨率恢復(fù)的過(guò)程,在網(wǎng)絡(luò)各個(gè)階段都存在高分辨率特征圖。

下圖簡(jiǎn)潔明了地表達(dá)作者的思想。

在上圖中網(wǎng)絡(luò)向右側(cè)方向,深度不斷加深,網(wǎng)絡(luò)向下方向,特征圖被下采樣分辨率越小,相同深度高分辨率和低分辨率特征圖在中間有互相融合的過(guò)程。

作者描述這種結(jié)構(gòu)為不同分辨率子網(wǎng)絡(luò)并行前進(jìn)。

關(guān)鍵點(diǎn)的heatmap是在最后的高分辨率特征圖上計(jì)算的。

網(wǎng)絡(luò)中不同分辨率子網(wǎng)絡(luò)特征圖融合過(guò)程如下:

主要是使用strided 3*3的卷積來(lái)下采樣和up sample 1*1卷積上采樣。

這么做有什么好處?

作者認(rèn)為:

1)一直維護(hù)了高分辨率特征圖,不需要恢復(fù)分辨率。

2)多次重復(fù)融合特征的多分辨率表示。

實(shí)驗(yàn)結(jié)果

該算法在COCO姿態(tài)估計(jì)數(shù)據(jù)集的驗(yàn)證集上測(cè)試結(jié)果:

與目前的state-of-the-art比較,取得了各個(gè)指標(biāo)的最高值。相同分辨率的輸入圖像,與之前的最好算法相比增長(zhǎng)了3個(gè)百分點(diǎn)!

在COCO test-dev數(shù)據(jù)集上,同樣一騎絕塵!

在MPII test 數(shù)據(jù)集上,同樣取得了最好的結(jié)果!

作者進(jìn)一步與之前最好模型比較了參數(shù)量、計(jì)算量,該文發(fā)明的HRNet-W32在精度最高的同時(shí),計(jì)算量最低!

如下圖:

在PoseTrack2017姿態(tài)跟蹤數(shù)據(jù)集上的結(jié)果比較:

同樣取得了最好的結(jié)果。

下圖是算法姿態(tài)估計(jì)的結(jié)果示例:

(請(qǐng)點(diǎn)擊查看大圖)

不僅僅是姿態(tài)估計(jì)

作者在官網(wǎng)指出,深度高分辨率網(wǎng)絡(luò)不僅對(duì)姿態(tài)估計(jì)有效,也可以應(yīng)用到計(jì)算機(jī)視覺(jué)的其他任務(wù),諸如語(yǔ)義分割、人臉對(duì)齊、目標(biāo)檢測(cè)、圖像分類(lèi)中,期待更多具有說(shuō)服力的結(jié)果公布。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1224

    瀏覽量

    25460
  • GitHub
    +關(guān)注

    關(guān)注

    3

    文章

    483

    瀏覽量

    17701
  • 姿態(tài)估計(jì)
    +關(guān)注

    關(guān)注

    0

    文章

    8

    瀏覽量

    2191

原文標(biāo)題:CVPR2019|微軟、中科大開(kāi)源基于深度高分辨表示學(xué)習(xí)的姿態(tài)估計(jì)算法

文章出處:【微信號(hào):rgznai100,微信公眾號(hào):rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    中科大人口模型講義

    中科大人口模型講義[hide] [/hide]
    發(fā)表于 09-15 12:01

    微機(jī)原理與接口技術(shù) 中科大教材

    微機(jī)原理與接口技術(shù) 中科大教材[/hide]
    發(fā)表于 12-07 11:15

    中科大發(fā)的論文《新一代TSC2046觸摸屏控制器》

    中科大發(fā)的論文《新一代TSC2046觸摸屏控制器》
    發(fā)表于 08-03 08:12

    51單片機(jī)C語(yǔ)言編程入門(mén)(中科大)

    51單片機(jī)C語(yǔ)言編程入門(mén)(中科大)
    發(fā)表于 08-06 12:20

    中科大嵌入式課件全集

    本帖最后由 eehome 于 2013-1-5 09:46 編輯 中科大嵌入式課件全集
    發(fā)表于 08-14 21:52

    溷沌數(shù)字通信(中科大出版的)

    溷沌數(shù)字通信(中科大出版的)
    發(fā)表于 08-16 16:49

    光電信號(hào)處理!??!(何兆湘 華中科大)

    光電信號(hào)處理?。?!(何兆湘 華中科大)
    發(fā)表于 08-16 19:47

    51單片機(jī)C語(yǔ)言編程入門(mén)(中科大)

    51單片機(jī)C語(yǔ)言編程入門(mén)(中科大)
    發(fā)表于 08-17 16:02

    51單片機(jī)資料(中科大

    51單片機(jī)資料(中科大),超高新掃描版,上傳給初學(xué)者{:7:}
    發(fā)表于 06-23 12:51

    中科院中科大2003年量子力學(xué)考研試題答案

    中科院—中科大2003年量子力學(xué)考研試題答案
    發(fā)表于 11-25 16:05 ?0次下載
    <b class='flag-5'>中科院中科大</b>2003年量子力學(xué)考研試題答案

    人口模型講義 (中科大課程)

    人口模型課件 (中科大課程講義)
    發(fā)表于 09-15 11:59 ?24次下載

    基于深度學(xué)習(xí)的二維人體姿態(tài)估計(jì)方法

    基準(zhǔn)、姿態(tài)估計(jì)方法和評(píng)測(cè)標(biāo)準(zhǔn)等方面,對(duì)近年來(lái)基于深度學(xué)習(xí)的二維人體姿態(tài)估計(jì)的諸多研究工作進(jìn)行系統(tǒng)
    發(fā)表于 03-22 15:51 ?5次下載
    基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的二維人體<b class='flag-5'>姿態(tài)</b><b class='flag-5'>估計(jì)</b>方法

    基于深度學(xué)習(xí)的二維人體姿態(tài)估計(jì)算法

    ,更能充分地提取圖像信息,獲取更具有魯棒性的特征,因此基于深度學(xué)習(xí)的方法已成為二維人體姿態(tài)估計(jì)算法研究的主流方向。然而,深度
    發(fā)表于 04-27 16:16 ?7次下載
    基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的二維人體<b class='flag-5'>姿態(tài)</b><b class='flag-5'>估計(jì)算法</b>

    在醫(yī)療AI領(lǐng)域砥礪前行的中科大學(xué)子

    作為國(guó)字號(hào)的科研基石,中科大依靠學(xué)術(shù)層面的踏實(shí)耕耘,很大程度上影響了中國(guó)的醫(yī)療科技風(fēng)向。 談?wù)撘凰髮W(xué)撐起一個(gè)城市的代表,中科大和合肥的CP組合,一定榜上有名。 在合肥的“大湖名城 創(chuàng)新高地”立城
    的頭像 發(fā)表于 05-10 09:36 ?5383次閱讀

    基于飛控的姿態(tài)估計(jì)算法作用及原理

    ? 姿態(tài)估計(jì)的作用? 姿態(tài)估計(jì)是飛控算法的一個(gè)基礎(chǔ)部分,而且十分重要。為了完成飛行器平穩(wěn)的姿態(tài)
    發(fā)表于 11-13 11:00 ?1808次閱讀
    基于飛控的<b class='flag-5'>姿態(tài)</b><b class='flag-5'>估計(jì)算法</b>作用及原理