99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學(xué)習(xí)與深度學(xué)習(xí)之間比較

電子工程師 ? 來源:yxw ? 2019-05-11 10:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,隨著科技的快速發(fā)展,人工智能不斷進入我們的視野中。作為人工智能的核心技術(shù),機器學(xué)習(xí)深度學(xué)習(xí)也變得越來越火。一時間,它們幾乎成為了每個人都在談?wù)摰脑掝}。那么,機器學(xué)習(xí)和深度學(xué)習(xí)到底是什么,它們之間究竟有什么不同呢?

什么是機器學(xué)習(xí)?

機器學(xué)習(xí)(Machine Learning,ML)是人工智能的子領(lǐng)域,也是人工智能的核心。它囊括了幾乎所有對世界影響最大的方法(包括深度學(xué)習(xí))。機器學(xué)習(xí)理論主要是設(shè)計和分析一些讓計算機可以自動學(xué)習(xí)的算法。

舉個例子,假設(shè)要構(gòu)建一個識別貓的程序。傳統(tǒng)上如果我們想讓計算機進行識別,需要輸入一串指令,例如貓長著毛茸茸的毛、頂著一對三角形的的耳朵等,然后計算機根據(jù)這些指令執(zhí)行下去。但是如果我們對程序展示一只老虎的照片,程序應(yīng)該如何反應(yīng)呢?更何況通過傳統(tǒng)方式要制定全部所需的規(guī)則,而且在此過程中必然會涉及到一些困難的概念,比如對毛茸茸的定義。因此,更好的方式是讓機器自學(xué)。

我們可以為計算機提供大量的貓的照片,系統(tǒng)將以自己特有的方式查看這些照片。隨著實驗的反復(fù)進行,系統(tǒng)會不斷學(xué)習(xí)更新,最終能夠準(zhǔn)確地判斷出哪些是貓,哪些不是貓。

什么是深度學(xué)習(xí)?

深度學(xué)習(xí)(DeepLearning,DL)屬于機器學(xué)習(xí)的子類。它的靈感來源于人類大腦的工作方式,是利用深度神經(jīng)網(wǎng)絡(luò)來解決特征表達的一種學(xué)習(xí)過程。深度神經(jīng)網(wǎng)絡(luò)本身并非是一個全新的概念,可理解為包含多個隱含層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。為了提高深層神經(jīng)網(wǎng)絡(luò)的訓(xùn)練效果,人們對神經(jīng)元的連接方法以及激活函數(shù)等方面做出了調(diào)整。其目的在于建立、模擬人腦進行分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),模仿人腦的機制來解釋數(shù)據(jù),如文本、圖像、聲音。

機器學(xué)習(xí)與深度學(xué)習(xí)的比較

1、應(yīng)用場景

機器學(xué)習(xí)在指紋識別、特征物體檢測等領(lǐng)域的應(yīng)用基本達到了商業(yè)化的要求。

深度學(xué)習(xí)主要應(yīng)用于文字識別、人臉技術(shù)、語義分析、智能監(jiān)控等領(lǐng)域。目前在智能硬件、教育、醫(yī)療等行業(yè)也在快速布局。

2、所需數(shù)據(jù)量

機器學(xué)習(xí)能夠適應(yīng)各種數(shù)據(jù)量,特別是數(shù)據(jù)量較小的場景。如果數(shù)據(jù)量迅速增加,那么深度學(xué)習(xí)的效果將更加突出,這是因為深度學(xué)習(xí)算法需要大量數(shù)據(jù)才能完美理解。

3、執(zhí)行時間

執(zhí)行時間是指訓(xùn)練算法所需要的時間量。一般來說,深度學(xué)習(xí)算法需要大量時間進行訓(xùn)練。這是因為該算法包含有很多參數(shù),因此訓(xùn)練它們需要比平時更長的時間。相對而言,機器學(xué)習(xí)算法的執(zhí)行時間更少。

4、解決問題的方法

機器學(xué)習(xí)算法遵循標(biāo)準(zhǔn)程序以解決問題。它將問題拆分成數(shù)個部分,對其進行分別解決,而后再將結(jié)果結(jié)合起來以獲得所需的答案。深度學(xué)習(xí)則以集中方式解決問題,而不必進行問題拆分。

在本文中,我們對機器學(xué)習(xí)與深度學(xué)習(xí)的區(qū)別作出了簡要概述。目前,這兩種算法已被廣泛應(yīng)用于商業(yè)領(lǐng)域,相信在未來,機器學(xué)習(xí)與深度學(xué)習(xí)能夠為更多行業(yè)帶來令人激動的光明前景。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249581
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進機器人日常

    在人工智能和機器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的
    的頭像 發(fā)表于 02-19 15:49 ?460次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?539次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1192次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    什么是機器學(xué)習(xí)?通過機器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機器學(xué)習(xí)”最初的研究動機是讓計算機系統(tǒng)具有人的學(xué)習(xí)能力以便實現(xiàn)人工智能。因為沒有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?965次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?1224次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1919次閱讀

    pcie在深度學(xué)習(xí)中的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強大的計算能力來訓(xùn)練。傳統(tǒng)的CPU計算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應(yīng)運而生,它們通過
    的頭像 發(fā)表于 11-13 10:39 ?1352次閱讀

    AI干貨補給站 | 深度學(xué)習(xí)機器視覺的融合探索

    ,幫助從業(yè)者積累行業(yè)知識,推動工業(yè)視覺應(yīng)用的快速落地。本期亮點預(yù)告本期將以“深度學(xué)習(xí)機器視覺的融合探索”為主題,通過講解深度學(xué)習(xí)定義、傳統(tǒng)
    的頭像 發(fā)表于 10-29 08:04 ?579次閱讀
    AI干貨補給站 | <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>與<b class='flag-5'>機器</b>視覺的融合探索

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?659次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1382次閱讀

    激光雷達技術(shù)的基于深度學(xué)習(xí)的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 10:57 ?1071次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1235次閱讀

    人工智能、機器學(xué)習(xí)深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2980次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進,相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :
    的頭像 發(fā)表于 10-23 15:25 ?2900次閱讀