99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

GaN-SiC混合材料更薄和更高功率

kus1_iawbs2016 ? 來源:工程師曾玲 ? 2019-02-02 17:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

瑞典的研究人員在碳化硅(SiC)上生長出更薄的IIIA族氮化物結(jié)構(gòu),以期實現(xiàn)高功率和高頻薄層高電子遷移率晶體管(T-HEMT)和其他器件。

從圖1可以看出,新結(jié)構(gòu)采用高質(zhì)量的60nm無晶界氮化鋁(AlN)成核層,而不是大約1-2μm厚的氮化鎵(GaN)緩沖層,以避免大面積擴(kuò)展缺陷。成核層允許高質(zhì)量的GaN在0.2μm的厚度內(nèi)生長。

圖1:(a)常規(guī)和(b)低TBR AlN成核,沿GaN / AlN / SiC界面沿[11-20]方向的橫截面TEM圖像。(c)GaN /低TBR AlN NL / SiC的HRTEM圖像。(d)GaN /低TBR AlN NL界面處的HRTEM。(e)低TBR AlN NL / SiC界面處HRTEM圖像。

正常厚度的緩沖層用于轉(zhuǎn)變和降低由于GaN和SiC之間3.5%晶格失配所引起的缺陷。需注意的是GaN與藍(lán)寶石和硅等其他襯底的失配率要高得多。這樣的緩沖層會為高功率和高頻器件帶來許多問題。這些層通常會摻雜碳或鐵以增加電阻,目的是將電流限制在溝道區(qū)域,避免寄生傳導(dǎo)的泄漏效應(yīng)。這些摻雜無會產(chǎn)生電荷俘獲狀態(tài),這可能導(dǎo)致其對性能的負(fù)面影響,例如射頻操作中的電流崩潰。

另外,較薄的器件還應(yīng)具有較低的熱阻,從而改善熱管理。來自SweGaN AB,查爾姆斯理工大學(xué)和林雪平大學(xué)的團(tuán)隊評論說:“GaN / AlN / SiC界面產(chǎn)生的空洞和位錯等結(jié)構(gòu)缺陷會引入熱邊界電阻(TBR),導(dǎo)致HEMT中通道溫度升高30-40%?!?/p>

降低昂貴材料的需求量是該項工作的另一個亮點。據(jù)研究人員估計,包括前體和氣體在內(nèi)的原材料需求量將降低90%,同時由于所需的生長時間縮短,處理成本也隨之降低。

新的AlN成核工藝避免了導(dǎo)致柱狀生長的顆粒狀形態(tài)的產(chǎn)生——造成的這種缺陷會被帶入覆蓋的GaN中。通常情況下,顆粒形態(tài)的產(chǎn)生是由于生長表面上鋁原子的低遷移率造成的。

IIIA氮化物材料在硅面4H-SiC上生長。熱壁金屬有機(jī)化學(xué)氣相沉積法(MOCVD)用于制造具有60nm AlN成核,200nm GaN溝道,高達(dá)1.5nm的AlN中間層,10-14nm AlGaN勢壘(~30%Al)的外延結(jié)構(gòu),和2nm GaN蓋帽層。采用低熱邊界電阻(低TBR)技術(shù)生產(chǎn)的60nm AlN可由熱壁生長實現(xiàn)。

盡管結(jié)構(gòu)厚度更薄,但在低108 /cm-2范圍內(nèi)的穿透位錯密度比具有相同厚度的典型GaN層低兩個數(shù)量級,研究人員如此估計。在具有2nm GaN帽和14nm Al0.29Ga0.71N勢壘的結(jié)構(gòu)上的非接觸式霍爾測量得到9.8×1012/cm2的二維電子氣(2DEG)密度和2050cm2 / V-s遷移率。薄層電阻為315Ω/m2。

測試T-HEMT是在具有2nm GaN帽,10nm Al0.3Ga0.7N勢壘和1nm AlN中間層的材料上制備的?;阢g的觸點用于源極/漏極,接觸電阻為0.3Ω-mm。

GaN-SiC混合材料更薄和更高功率

圖2:(a)直流漏極電流 - 電壓(IDS-VDS)特性,(b)傳輸特性以及10V漏極偏置(VDS)下的柵極和漏極電流與柵極電壓(VGS)的函數(shù)關(guān)系,(c)跨導(dǎo)(gm)作為柵極電位的函數(shù),和(d)作為T-HEMT的VDSQ的函數(shù)的射頻輸出功率密度。(e)沒有頂部活性層的異質(zhì)結(jié)構(gòu)的垂直和側(cè)向擊穿特性。

該器件實現(xiàn)了1.1A / mm的高導(dǎo)通電流密度和1.3Ω-mm的低歸一化導(dǎo)通電阻。(圖2)飽和電流可維持高達(dá)30V的漏極偏壓。采用10V漏極偏壓時,夾斷很明顯,跨導(dǎo)達(dá)到500mS / mm。閾值擺幅取決于柵極長度:0.1μm為250mV / decade,0.2μm為130mV / decade。對于0.1μm和0.2μm的柵極,擊穿電壓分別為70V和140V。

研究人員表明“擊穿電壓和柵極長度之間的線性關(guān)系表明,由于柵極長度和柵極 - 漏極間距的限制,擊穿是橫向發(fā)生的。”

柵極 - 漏極間距為2μm,遠(yuǎn)遠(yuǎn)低于通常用于GaN HEMT的通常10-20μm,目的是為了提高功率性能。而傳統(tǒng)的GaN功率HEMT具有微米級的柵極長度。

30GHz時的負(fù)載牽引測量在40V漏極 - 源極靜態(tài)偏置(VDSQ)下產(chǎn)生5.8W / mm的峰值射頻功率密度。

在沒有上AlN / AlGaN層的外延疊層上的擊穿測量在橫向和垂直方向上產(chǎn)生高達(dá)1.5kV擊穿電壓。該團(tuán)隊說:“在這兩種情況下,擊穿是由于觸點的不良劃定。因此,預(yù)期堆疊的實際擊穿電壓會更高。也就是說,擊穿受表面限制,并證實沒有界面載體?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • SiC
    SiC
    +關(guān)注

    關(guān)注

    31

    文章

    3226

    瀏覽量

    65300
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    19

    文章

    2209

    瀏覽量

    76842

原文標(biāo)題:用于高頻和功率電子器件的GaN-SiC混合材料

文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導(dǎo)體技術(shù)創(chuàng)新聯(lián)盟】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    什么是IGBT/SiC/GaN HEMT功率芯片/模塊/模組?特性是什么?主要應(yīng)用哪里?

    IGBT/SiC/GaN HEMT功率芯片/模塊/模組 一、核心器件定義 ? IGBT(絕緣柵雙極型晶體管) ? 電力電子領(lǐng)域核心開關(guān)器件,通過柵極電壓控制導(dǎo)通狀態(tài): ? 結(jié)構(gòu)特性 ?:融合
    的頭像 發(fā)表于 05-26 14:37 ?512次閱讀

    GaNSiC功率器件深度解析

    本文針對當(dāng)前及下一代電力電子領(lǐng)域中市售的碳化硅(SiC)與氮化鎵(GaN)晶體管進(jìn)行了全面綜述與展望。首先討論了GaNSiC器件的材料特性
    的頭像 發(fā)表于 05-15 15:28 ?578次閱讀
    <b class='flag-5'>GaN</b>與<b class='flag-5'>SiC</b><b class='flag-5'>功率</b>器件深度解析

    GaN、超級SI、SiC這三種MOS器件的用途區(qū)別

    如果想要說明白GaN、超級SI、SiC這三種MOS器件的用途區(qū)別,首先要做的是搞清楚這三種功率器件的特性,然后再根據(jù)材料特性分析具體應(yīng)用。
    的頭像 發(fā)表于 03-14 18:05 ?1129次閱讀

    SiCGaN技術(shù)專利競爭:新興電力電子領(lǐng)域的創(chuàng)新機(jī)遇

    在過去十年中,碳化硅(SiC)和氮化鎵(GaN)技術(shù)的迅速崛起顯著重塑了電力電子行業(yè)。這些寬禁帶材料提供了諸多優(yōu)勢,如降低功率損耗、更高的開
    的頭像 發(fā)表于 03-07 11:10 ?559次閱讀
    <b class='flag-5'>SiC</b>與<b class='flag-5'>GaN</b>技術(shù)專利競爭:新興電力電子領(lǐng)域的創(chuàng)新機(jī)遇

    基于Si IGBT/SiC MOSFET的混合開關(guān)器件綜述

    拿到一個ST的宣傳材料,該資料介紹了Si/SiC混合功率器件可能是過渡到全SiC的中間方案,也找了文章了解了一下原理。資料有限,標(biāo)題的問題沒
    的頭像 發(fā)表于 03-01 14:37 ?905次閱讀
    基于Si IGBT/<b class='flag-5'>SiC</b> MOSFET的<b class='flag-5'>混合</b>開關(guān)器件綜述

    香港科技大學(xué)陳敬課題組揭示GaNSiC材料的最新研究進(jìn)展

    基于寬禁帶半導(dǎo)體氮化鎵,碳化硅的最新研究進(jìn)展。研究成果覆蓋功率器件技術(shù)和新型器件技術(shù): 高速且具備優(yōu)越開關(guān)速度控制能力的3D堆疊式GaN/SiC cascode 功率器件 多年來,商業(yè)
    的頭像 發(fā)表于 02-19 11:23 ?719次閱讀
    香港科技大學(xué)陳敬課題組揭示<b class='flag-5'>GaN</b>與<b class='flag-5'>SiC</b><b class='flag-5'>材料</b>的最新研究進(jìn)展

    電動汽車的SiC演變和GaN革命

    電子發(fā)燒友網(wǎng)站提供《電動汽車的SiC演變和GaN革命.pdf》資料免費下載
    發(fā)表于 01-24 14:03 ?2次下載
    電動汽車的<b class='flag-5'>SiC</b>演變和<b class='flag-5'>GaN</b>革命

    Si IGBT和SiC MOSFET混合器件特性解析

    大電流 Si IGBT 和小電流 SiC MOSFET 兩者并聯(lián)形成的混合器件實現(xiàn)了功率器件性能和成本的折衷。 但是SIC MOS和Si IGBT的器件特性很大不同。為了盡可能在不同工
    的頭像 發(fā)表于 01-21 11:03 ?1765次閱讀
    Si IGBT和<b class='flag-5'>SiC</b> MOSFET<b class='flag-5'>混合</b>器件特性解析

    2025年功率半導(dǎo)體行業(yè):五大關(guān)鍵趨勢洞察

    GaN 材料優(yōu)勢顯著。SiC 具有高耐壓、高導(dǎo)熱性、高電子遷移率等特性,其擊穿電場強(qiáng)度是硅的 10 倍左右,熱導(dǎo)率更是硅的 3 倍以上,這使得 SiC 器件能夠在
    的頭像 發(fā)表于 01-08 16:32 ?3383次閱讀

    SiCGaN器件的兩大主力應(yīng)用市場

    氮化鎵(GaN)和碳化硅(SiC)是寬禁帶(WBG)半導(dǎo)體材料,由于其獨特性,使其在提高電子設(shè)備的效率和性能方面起著至關(guān)重要的作用,特別是在DC/DC轉(zhuǎn)換器和DC/AC逆變器領(lǐng)域。
    的頭像 發(fā)表于 11-20 16:21 ?1447次閱讀
    <b class='flag-5'>SiC</b>和<b class='flag-5'>GaN</b>器件的兩大主力應(yīng)用市場

    深度了解SiC材料的物理特性

    與Si材料相比,SiC半導(dǎo)體材料在物理特性上優(yōu)勢明顯,比如擊穿電場強(qiáng)度高、耐高溫、熱傳導(dǎo)性好等,使其適合于制造高耐壓、低損耗功率器件。本篇章帶你詳細(xì)了解
    的頭像 發(fā)表于 11-14 14:55 ?2252次閱讀
    深度了解<b class='flag-5'>SiC</b><b class='flag-5'>材料</b>的物理特性

    GaNSiC功率器件的特性和應(yīng)用

    如今,圍繞第三代半導(dǎo)體的研發(fā)和應(yīng)用日趨火熱。由于具有更大的禁帶寬度、高耐壓、高熱導(dǎo)率、更高的電子飽和速度等特點,第三代半導(dǎo)體材料能夠滿足未來電子產(chǎn)品在高溫、高功率、高壓、高頻等方面更高
    的頭像 發(fā)表于 10-18 15:40 ?1991次閱讀
    <b class='flag-5'>GaN</b>和<b class='flag-5'>SiC</b><b class='flag-5'>功率</b>器件的特性和應(yīng)用

    什么是SiC功率器件?它有哪些應(yīng)用?

    SiC(碳化硅)功率器件是一種基于碳化硅材料制造的功率半導(dǎo)體器件,它是繼硅(Si)和氮化鎵(GaN)之后的第三代半導(dǎo)體
    的頭像 發(fā)表于 09-10 15:15 ?4357次閱讀

    芯干線科技GaN功率器件及應(yīng)用

    的性能提升提供了強(qiáng)大動力。而現(xiàn)今,以碳化硅(SiC)和氮化鎵(GaN)等為代表的寬禁帶半導(dǎo)體材料,作為第三代半導(dǎo)體材料,正因其優(yōu)異的性能而備受矚目,其中碳化硅(
    的頭像 發(fā)表于 08-21 10:01 ?1117次閱讀
    芯干線科技<b class='flag-5'>GaN</b><b class='flag-5'>功率</b>器件及應(yīng)用

    GaN晶體管和SiC晶體管有什么不同

    GaN(氮化鎵)晶體管和SiC(碳化硅)晶體管作為兩種先進(jìn)的功率半導(dǎo)體器件,在電力電子、高頻通信及高溫高壓應(yīng)用等領(lǐng)域展現(xiàn)出了顯著的優(yōu)勢。然而,它們在材料特性、性能表現(xiàn)、應(yīng)用場景以及制造
    的頭像 發(fā)表于 08-15 11:16 ?1776次閱讀