99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習算法基本概念及選用指南

Dbwd_Imgtec ? 來源:cc ? 2019-01-15 15:55 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文對機器學習的一些基本概念給出了簡要的介紹,并對不同任務(wù)中使用不同類型的機器學習算法給出一點建議。

在從事數(shù)據(jù)科學工作的時候,經(jīng)常會遇到為具體問題選擇最合適算法的問題。雖然有很多有關(guān)機器學習算法的文章詳細介紹了相關(guān)的算法,但要做出最合適的選擇依然非常困難。

在這篇文章中,我將對一些基本概念給出簡要的介紹,對不同任務(wù)中使用不同類型的機器學習算法給出一點建議。在文章的最后,我將對這些算法進行總結(jié)。

首先,你應(yīng)該能區(qū)分以下四種機器學習任務(wù):

監(jiān)督學習

無監(jiān)督學習

半監(jiān)督學習

強化學習

監(jiān)督學習

監(jiān)督學習是從標記的訓練數(shù)據(jù)中推斷出某個功能。通過擬合標注的訓練集,找到最優(yōu)的模型參數(shù)來預(yù)測其他對象(測試集)上的未知標簽。如果標簽是一個實數(shù),我們稱之為回歸。如果標簽來自有限數(shù)量的值,這些值是無序的,那么稱之為分類。

無監(jiān)督學習

在無監(jiān)督學習中,我們對于物體知道的信息比較少,特別是訓練集沒有做過標記。那現(xiàn)在的目標是什么呢?觀察對象之間的相似性,并將它們劃分到不同的群組中。某些對象可能與其他群組中的對象都有很大的區(qū)別,那么我們就認為這些對象是異常的。

半監(jiān)督學習

半監(jiān)督學習包括了前面描述的兩個問題:同時使用標記和未標記的數(shù)據(jù)。對于那些無法標注所有數(shù)據(jù)的人來說,這是一個很好的方法。該方法能夠顯著提高準確性,因為在使用訓練集中未標記數(shù)據(jù)的同時,還能使用少量帶有標記的數(shù)據(jù)。

強化學習

強化學習跟上面提到的方法不太一樣,因為在這里并沒有標記或未標記的數(shù)據(jù)集。強化學習涉及到軟件代理應(yīng)該如何在某些環(huán)境中采取行動來最大化累積獎勵。

想象一下,你是一個在陌生環(huán)境中的機器人,你可以執(zhí)行一些動作,并從中獲得獎勵。在每執(zhí)行一個動作之后,你的行為會變得越來越復(fù)雜越來越聰明,也就是說 ,你正在訓練自己在執(zhí)行每一個動作之后讓自己表現(xiàn)得更為有效。在生物學中,這被稱為適應(yīng)自然環(huán)境。

常用的機器學習算法

現(xiàn)在,我們對機器學習的類型有了一定的了解,下面,我們來看一下最流行的算法及其在現(xiàn)實生活中的應(yīng)用。

線性回歸和線性分類器

這些可能是機器學習中最簡單的算法了。假設(shè)有對象(矩陣A)的特征x1,... xn和標簽(向量B)。我們的目標是根據(jù)某些損失函數(shù)(例如MSE或MAE)找到最優(yōu)權(quán)重w1,... wn和這些特征的偏差。 在使用MSE的情況下,有一個來自最小二乘法的數(shù)學公式:

在實踐中,使用梯度下降來進行優(yōu)化則更為容易,計算上更有效率。盡管這個算法很簡單,但是在存在成千上萬個特征的時候,這個方法依然能夠表現(xiàn)良好。更復(fù)雜的算法可能會遇到過擬合特征或者是沒有足夠大的數(shù)據(jù)集的問題,而線性回歸則是一個不錯的選擇。

為了防止過擬合,可使用像lasso和ridge這樣的規(guī)則化技術(shù)。其主要思路是分別把權(quán)重總和以及權(quán)重平方的總和加到損失函數(shù)中。

邏輯回歸

邏輯回歸執(zhí)行的是二元分類,所以輸出的標簽是二元的。給定輸入特征向量x,定義P(y=1|x)為輸出y等于1時的條件概率。系數(shù)w是模型要學習的權(quán)重。

由于該算法需要計算每個類別的歸屬概率,因此應(yīng)該考慮概率與0或1的差異程度,并像在線性回歸中一樣對所有對象取平均值。這種損失函數(shù)是交叉熵的平均值:

邏輯回歸有什么好處呢?它采用了線性組合的特征,并對其應(yīng)用非線性函數(shù)(sigmoid),所以它是一個非常小的神經(jīng)網(wǎng)絡(luò)實例!

決策樹

另一個比較流行、并且容易理解的算法是決策樹。它的圖形能讓你看到你自己的想法,它的引擎有一個系統(tǒng)的、有記錄的思考過程。

這個算法很簡單。在每個節(jié)點中,我們選擇所有特征和所有可能的分割點之間的最佳分割。選擇每個分割以最大化某些功能。在分類樹中使用交叉熵和基尼指數(shù)。在回歸樹中,最小化該區(qū)域中的點的目標值的預(yù)測變量與分配給它的點之間的平方誤差的總和。

算法會在每個節(jié)點上遞歸地完成這個過程,直到滿足停止條件為止。

K-means

有的時候你并不知道標簽,而目標是根據(jù)對象的特征來分配標簽。這被稱為集聚化任務(wù)。

假設(shè)要把所有的數(shù)據(jù)對象分成k個簇,則需要從數(shù)據(jù)中隨機選擇k個點,并將它們命名為簇的中心。其他對象的簇由最近的簇中心定義。然后,聚類的中心會被轉(zhuǎn)換并重復(fù)該過程直到收斂。

雖然這個技術(shù)非常不錯,但它仍然有一些缺點。首先,我們并不知道簇的數(shù)量。其次,結(jié)果依賴開始時隨機選擇的那個點,算法無法保證我們能夠?qū)崿F(xiàn)功能的全局最小值。

主成分分析(PCA)

昨晚或者最近的幾個小時里你有沒有在準備考試?你無法記住所有的信息,但是想要在可用的時間內(nèi)最大限度地記住信息,例如,首先學習考試中經(jīng)常出現(xiàn)的定理等等。

主成分分析基于類似的思想。該算法提供了降維的功能。有時,你有很多的特征,并且彼此之間強相關(guān),模型可以很容易地適應(yīng)大量的數(shù)據(jù)。然后,你可以應(yīng)用PCA。

你應(yīng)該計算某些向量上的投影,以使數(shù)據(jù)的方差最大化,并盡可能少地丟失信息。而這些向量是來自數(shù)據(jù)集特征的相關(guān)矩陣的特征向量。

算法的內(nèi)容現(xiàn)在已經(jīng)很清楚了:

計算特征列的相關(guān)矩陣,找出該矩陣的特征向量。

將這些多維向量計算出來,并計算所有特征的投影。

新特征是投影中的坐標,其數(shù)量取決于投影的特征向量的數(shù)量。

神經(jīng)網(wǎng)絡(luò)

在上文講到邏輯回歸的時候,就已經(jīng)提到了神經(jīng)網(wǎng)絡(luò)。在一些具體的任務(wù)中,有很多不同的體系結(jié)構(gòu)都非常有價值。而神經(jīng)網(wǎng)絡(luò)更多的時候是一系列的層或組件,它們之間存在線性連接并遵循非線性。

如果你正在處理圖像,那么卷積深度神經(jīng)網(wǎng)絡(luò)能展現(xiàn)出不錯的結(jié)果。而非線性則通過卷積層和匯聚層表現(xiàn)出來,它能夠捕捉圖像的特征。

要處理文本和序列,最好選擇遞歸神經(jīng)網(wǎng)絡(luò)。 RNN包含了LSTM或GRU模塊,并且能夠數(shù)據(jù)一同使用。也許,最有名的RNN應(yīng)用是機器翻譯吧。

結(jié)論

我希望能向大家解釋最常用的機器學習算法,并就針對具體問題如何選擇機器學習算法提供建議。為了能讓你更輕松的掌握這些內(nèi)容,我準備了下面這個總結(jié)。

線性回歸和線性分類器。盡管看起來簡單,但當其他算法在大量特征上遇到過擬合的問題時,它的優(yōu)勢就表現(xiàn)出來了。

Logistic回歸是最簡單的非線性分類器,具有二元分類的參數(shù)和非線性函數(shù)(S形)的線性組合。

決策樹通常與人類的決策過程相似,并且易于解釋。但它們最常用于隨機森林或梯度增強這樣的組合中。

K-means是一個更原始、但又非常容易理解的算法。

PCA是降低信息損失最少的特征空間維度的絕佳選擇。

神經(jīng)網(wǎng)絡(luò)是機器學習算法的新武器,可以應(yīng)用于許多任務(wù),但其訓練的計算復(fù)雜度相當大。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:機器學習算法選用指南

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    第十三章 通訊的基本概念

    本章介紹通訊基本概念,包括串行/并行、全雙工/半雙工/單工、同步/異步通訊,還提及通訊速率中比特率與波特率的概念。
    的頭像 發(fā)表于 05-22 17:29 ?1215次閱讀
    第十三章 通訊的<b class='flag-5'>基本概念</b>

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    傳統(tǒng)機器學習方法和應(yīng)用指導

    在上一篇文章中,我們介紹了機器學習的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法
    的頭像 發(fā)表于 12-30 09:16 ?1183次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應(yīng)用指導

    自然語言處理與機器學習的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個核心領(lǐng)域,它使計算機能夠從數(shù)據(jù)中學習并做出預(yù)測或決策。自然語言處理與機器學習之間有著密切的關(guān)系,因為機器
    的頭像 發(fā)表于 12-05 15:21 ?1981次閱讀

    安森美半導體器件選用指南

    電子發(fā)燒友網(wǎng)站提供《安森美半導體器件選用指南.pdf》資料免費下載
    發(fā)表于 11-18 17:00 ?0次下載

    NPU與機器學習算法的關(guān)系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計目標是提高機器學習
    的頭像 發(fā)表于 11-15 09:19 ?1212次閱讀

    Linux應(yīng)用編程的基本概念

    Linux應(yīng)用編程涉及到在Linux環(huán)境下開發(fā)和運行應(yīng)用程序的一系列概念。以下是一些涵蓋Linux應(yīng)用編程的基本概念。
    的頭像 發(fā)表于 10-24 17:19 ?646次閱讀

    諧波的概念及應(yīng)用

    本文簡單介紹了諧波的概念及應(yīng)用。
    的頭像 發(fā)表于 10-18 14:14 ?1281次閱讀
    諧波的<b class='flag-5'>概念及</b>應(yīng)用

    SDI接口的基本概念及傳輸信號類型

    SDI(Serial Digital Interface,串行數(shù)字接口)是一種用于傳輸數(shù)字視頻信號的接口標準。它廣泛應(yīng)用于廣播、電影制作、后期制作等領(lǐng)域。 一、SDI接口的基本概念 1.1 SDI
    的頭像 發(fā)表于 08-20 15:01 ?9028次閱讀

    S參數(shù)的概念及應(yīng)用

    電子發(fā)燒友網(wǎng)站提供《S參數(shù)的概念及應(yīng)用.pdf》資料免費下載
    發(fā)表于 08-12 14:29 ?0次下載

    AI入門之深度學習基本概念

    1、什么是深度學習 1.1、機器學習 ?? ? 圖1:計算機有效工作的常用方法:程序員編寫規(guī)則(程序),計算機遵循這些規(guī)則將輸入數(shù)據(jù)轉(zhuǎn)換為適當?shù)拇鸢浮_@一方法被稱為符號主義人工智能,適合用來解決定
    的頭像 發(fā)表于 08-08 11:24 ?2423次閱讀
    AI入門之深度<b class='flag-5'>學習</b>:<b class='flag-5'>基本概念</b>篇

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    本帖最后由 1653149838.791300 于 2024-8-12 20:18 編輯 [/td] [td]收到《時間序列與機器學習》這本書,很是欣喜,書籍內(nèi)容很詳實也是自己很感興趣
    發(fā)表于 08-07 23:03

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)篇

    章節(jié)介紹了機器學習,從方法論上來看,機器學習屬于歸納推理;從開發(fā)設(shè)計方式來看,機器學習屬于自動編
    發(fā)表于 07-25 14:33

    繼電器電感的基本概念及分類

    重要的影響。 一、繼電器電感的基本概念 電感的定義 電感是指導體在磁場中運動時,由于電磁感應(yīng)作用而產(chǎn)生的電動勢。電感的大小與導體的長度、截面積、形狀以及磁場的強度有關(guān)。 電感的單位 電感的單位是亨利(H),常用的單位還有毫亨
    的頭像 發(fā)表于 07-24 09:41 ?1188次閱讀

    BP網(wǎng)絡(luò)的基本概念和訓練原理

    )的多層前饋神經(jīng)網(wǎng)絡(luò)。BP網(wǎng)絡(luò)自1985年提出以來,因其強大的學習和適應(yīng)能力,在機器學習、數(shù)據(jù)挖掘、模式識別等領(lǐng)域得到了廣泛應(yīng)用。以下將對BP網(wǎng)絡(luò)的基本概念、訓練原理及其優(yōu)缺點進行詳細
    的頭像 發(fā)表于 07-19 17:24 ?3184次閱讀