99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡是什么

工程師 ? 來源:未知 ? 作者:姚遠香 ? 2018-11-24 09:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

神經(jīng)網(wǎng)絡是什么

神經(jīng)網(wǎng)絡可以指向兩種,一個是生物神經(jīng)網(wǎng)絡,一個是人工神經(jīng)網(wǎng)絡。

生物神經(jīng)網(wǎng)絡:一般指生物的大腦神經(jīng)元,細胞,觸點等組成的網(wǎng)絡,用于產(chǎn)生生物的意識,幫助生物進行思考和行動。

人工神經(jīng)網(wǎng)絡也簡稱為神經(jīng)網(wǎng)絡(NNs)或稱作連接模型,它是一種模仿動物神經(jīng)網(wǎng)絡行為特征,進行分布式并行信息處理的算法數(shù)學模型。這種網(wǎng)絡依靠系統(tǒng)的復雜程度,通過調(diào)整內(nèi)部大量節(jié)點之間相互連接的關(guān)系,從而達到處理信息的目的。人工神經(jīng)網(wǎng)絡是一種應用類似于大腦神經(jīng)突觸聯(lián)接的結(jié)構(gòu)進行信息處理的數(shù)學模型。在工程與學術(shù)界也常直接簡稱為“神經(jīng)網(wǎng)絡”或類神經(jīng)網(wǎng)絡。

人工神經(jīng)網(wǎng)絡

人工神經(jīng)網(wǎng)絡(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智能領域興起的研究熱點。它從信息處理角度對人腦神經(jīng)元網(wǎng)絡進行抽象, 建立某種簡單模型,按不同的連接方式組成不同的網(wǎng)絡。在工程與學術(shù)界也常直接簡稱為神經(jīng)網(wǎng)絡或類神經(jīng)網(wǎng)絡。神經(jīng)網(wǎng)絡是一種運算模型,由大量的節(jié)點(或稱神經(jīng)元)之間相互聯(lián)接構(gòu)成。每個節(jié)點代表一種特定的輸出函數(shù),稱為激勵函數(shù)(activation function)。每兩個節(jié)點間的連接都代表一個對于通過該連接信號的加權(quán)值,稱之為權(quán)重,這相當于人工神經(jīng)網(wǎng)絡的記憶。網(wǎng)絡的輸出則依網(wǎng)絡的連接方式,權(quán)重值和激勵函數(shù)的不同而不同。而網(wǎng)絡自身通常都是對自然界某種算法或者函數(shù)的逼近,也可能是對一種邏輯策略的表達。

最近十多年來,人工神經(jīng)網(wǎng)絡的研究工作不斷深入,已經(jīng)取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫(yī)學、經(jīng)濟等領域已成功地解決了許多現(xiàn)代計算機難以解決的實際問題,表現(xiàn)出了良好的智能特性。

生物神經(jīng)網(wǎng)絡

生物神經(jīng)網(wǎng)絡(Biological Neural Networks)一般指生物的大腦神經(jīng)元,細胞,觸點等組成的網(wǎng)絡,用于產(chǎn)生生物的意識,幫助生物進行思考和行動。1872年,意大利的醫(yī)學院畢業(yè)生高基,在一次意外中,將腦塊掉落在硝酸銀溶液中。數(shù)周后,他以顯微鏡觀察此腦塊,成就了神經(jīng)科學史上重大里程碑 “首次以肉眼看到神經(jīng)細胞”。

人工神經(jīng)網(wǎng)絡與生物神經(jīng)網(wǎng)絡區(qū)別

人工神經(jīng)網(wǎng)絡靠的是正向和反向傳播來更新神經(jīng)元, 從而形成一個好的神經(jīng)系統(tǒng), 本質(zhì)上, 這是一個能讓計算機處理和優(yōu)化的數(shù)學模型。 而生物神經(jīng)網(wǎng)絡是通過刺激, 產(chǎn)生新的聯(lián)結(jié), 讓信號能夠通過新的聯(lián)結(jié)傳遞而形成反饋。 雖然現(xiàn)在的計算機技術(shù)越來越高超, 不過我們身體里的神經(jīng)系統(tǒng)經(jīng)過了數(shù)千萬年的進化, 還是獨一無二的, 迄今為止, 再復雜, 再龐大的人工神經(jīng)網(wǎng)絡系統(tǒng)也不能替代我們的小腦袋。 我們應該感到自豪, 也應該珍惜上天的這份禮物。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    神經(jīng)網(wǎng)絡壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?676次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?930次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?777次閱讀

    BP神經(jīng)網(wǎng)絡與深度學習的關(guān)系

    BP神經(jīng)網(wǎng)絡與深度學習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播神經(jīng)網(wǎng)絡(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?867次閱讀

    BP神經(jīng)網(wǎng)絡的基本原理

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡基本原理的介紹: 一、網(wǎng)絡結(jié)構(gòu) BP神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:13 ?868次閱讀

    BP神經(jīng)網(wǎng)絡在圖像識別中的應用

    BP神經(jīng)網(wǎng)絡在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡能夠?qū)W習到復雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡在圖像識別中應用的分析: 一、BP神經(jīng)網(wǎng)絡基本原理 BP
    的頭像 發(fā)表于 02-12 15:12 ?682次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1213次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:53 ?1882次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1134次閱讀

    LSTM神經(jīng)網(wǎng)絡的結(jié)構(gòu)與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數(shù)據(jù)時表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-13 10:05 ?1636次閱讀

    LSTM神經(jīng)網(wǎng)絡與傳統(tǒng)RNN的區(qū)別

    在深度學習領域,循環(huán)神經(jīng)網(wǎng)絡(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡應運而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1220次閱讀

    LSTM神經(jīng)網(wǎng)絡的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(RNN),它能夠?qū)W習長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1589次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準、閉環(huán)反饋等應用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?668次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>101

    matlab 神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡 數(shù)學建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14