99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

《深度學習500問》通過問答的形式對深度學習相關(guān)的各類熱點問題進行梳理闡述

DPVg_AI_era ? 來源:未知 ? 作者:李倩 ? 2018-11-10 10:43 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,來自四川大學的畢業(yè)生在GitHub上創(chuàng)建了一個項目:《深度學習500問》,通過問答的形式對深度學習相關(guān)的各類熱點問題進行梳理闡述,覆蓋范圍包括概率知識、線性代數(shù)、機器學習、深度學習、計算機視覺等。這一項目用來幫助那些想了解深度學習的讀者,截止11月7日,這一項目已經(jīng)收到9000多個star。

近年來,深度學習在語音、圖像、自然語言處理等領(lǐng)域都取得了非常不錯的成果,自然而然地成為技術(shù)人員爭相學習的熱點。

為了幫助正在學習深度學習的伙伴們,川大的一名優(yōu)秀畢業(yè)生,在GitHub上創(chuàng)建了一個項目:《深度學習500問》,通過問答的形式對常用的概率知識、線性代數(shù)、機器學習、深度學習、計算機視覺等熱點問題進行闡述,以幫助自己及有需要的讀者。全書分為15個章節(jié),近20萬字。

截至11月7日,該項目已經(jīng)獲得了9571個「star」以及2416個「fork」(GitHub項目地址:https://github.com/scutan90/DeepLearning-500-questions)

雖然本書還未完結(jié),但還是值得一讀,下面我們詳細介紹書中有哪些內(nèi)容:

第一章 數(shù)學基礎(chǔ)

本章主要講解了數(shù)學基礎(chǔ)知識,不僅涵蓋了相關(guān)的基礎(chǔ)概念,還包括彼此之間的聯(lián)系,如標量、向量、張量之間的聯(lián)系;張量和矩陣的區(qū)別,還有常見的概率分布:

此外,還講解了不同類型的概率分布和統(tǒng)計學(期望、方差、協(xié)方差、相關(guān)數(shù))的相關(guān)基礎(chǔ)知識

第二章 機器學習基礎(chǔ)

本章為大家羅列了常見的算法以及常見分類算法的優(yōu)缺點、分類算法的評估用法、大數(shù)據(jù)與深度學習的關(guān)系等,第二章涵蓋的知識點雖然很多但卻十分全面。

第三章 深度學習基礎(chǔ)

本章開始進入主題,為了描述神經(jīng)網(wǎng)絡(luò),書中從最簡單的神經(jīng)網(wǎng)絡(luò)說起,然后層層深入,列舉了神經(jīng)網(wǎng)絡(luò)的常用模型結(jié)構(gòu),如何選擇一個深度學習開發(fā)平臺等重點內(nèi)容,如神經(jīng)網(wǎng)絡(luò)常用的模型結(jié)構(gòu)如下:

第四章 經(jīng)典網(wǎng)絡(luò)

本章向大家介紹了幾種經(jīng)典網(wǎng)絡(luò),包括LeNet-5、AlexNet、可視化ZFNet-解卷積、GoogleNet的模型結(jié)構(gòu)及模型解讀等,如LeNet-5的模型結(jié)構(gòu)如下:

看了上面這些內(nèi)容,你是不是已經(jīng)迫不及待想深度讀一下這本未完結(jié)的書呢?或者你正從事該領(lǐng)域的工作,也可以幫助作者完善成書。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:川大畢業(yè)極客創(chuàng)建項目《深度學習500問》,GitHub獲星近萬!

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    如何排除深度學習工作臺上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學習工作臺上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術(shù)的最新進展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學習技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變
    的頭像 發(fā)表于 02-14 11:15 ?537次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學習的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度
    的頭像 發(fā)表于 02-12 15:15 ?855次閱讀

    GPU在深度學習中的應(yīng)用 GPUs在圖形設(shè)計中的作用

    。 GPU的并行計算能力 GPU最初被設(shè)計用于處理圖形和圖像的渲染,其核心優(yōu)勢在于能夠同時處理成千上萬的像素點。這種并行處理能力使得GPU非常適合執(zhí)行深度學習中的大規(guī)模矩陣運算。在深度學習
    的頭像 發(fā)表于 11-19 10:55 ?1618次閱讀

    NPU在深度學習中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學習作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?1907次閱讀

    pcie在深度學習中的應(yīng)用

    深度學習模型通常需要大量的數(shù)據(jù)和強大的計算能力來訓練。傳統(tǒng)的CPU計算資源有限,難以滿足深度學習的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應(yīng)運而生,它們
    的頭像 發(fā)表于 11-13 10:39 ?1344次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?653次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應(yīng)用案例

    GPU在深度學習中的應(yīng)用廣泛且重要,以下是一些GPU深度學習應(yīng)用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1362次閱讀

    激光雷達技術(shù)的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學習技術(shù)的發(fā)展 深度學習是機器學習的一個分支,它
    的頭像 發(fā)表于 10-27 10:57 ?1065次閱讀

    FPGA加速深度學習模型的案例

    :DE5Net_Conv_Accelerator 應(yīng)用場景 :面向深度學習的開源項目,實現(xiàn)了AlexNet的第一層卷積運算加速。 技術(shù)特點 : 采用了Verilog語言進行編程,與PCIe接口相集成,可以直接插入到
    的頭像 發(fā)表于 10-25 09:22 ?1226次閱讀

    AI大模型與深度學習的關(guān)系

    AI大模型與深度學習之間存在著密不可分的關(guān)系,它們互為促進,相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學習是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2882次閱讀

    深度學習GPU加速效果如何

    圖形處理器(GPU)憑借其強大的并行計算能力,成為加速深度學習任務(wù)的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?609次閱讀

    FPGA做深度學習能走多遠?

    的發(fā)展前景較為廣闊,但也面臨一些挑戰(zhàn)。以下是一些關(guān)于 FPGA 在深度學習中應(yīng)用前景的觀點,僅供參考: ? 優(yōu)勢方面: ? 高度定制化的計算架構(gòu):FPGA 可以根據(jù)深度學習算法的特殊需
    發(fā)表于 09-27 20:53

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)知識學習

    今天來學習大語言模型在自然語言理解方面的原理以及問答回復實現(xiàn)。 主要是基于深度學習和自然語言處理技術(shù)。 大語言模型涉及以下幾個過程: 數(shù)據(jù)收集:大語言模型
    發(fā)表于 08-02 11:03

    NVIDIA推出全新深度學習框架fVDB

    在 SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1141次閱讀