99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習的來源

MqC7_CAAI_1981 ? 來源:未知 ? 作者:李倩 ? 2018-11-06 14:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機器學習是一種實現(xiàn)人工智能的方法,深度學習是一種實現(xiàn)機器學習的技術(shù)。

深度學習本來并不是一種獨立的學習方法,其本身也會用到有監(jiān)督和無監(jiān)督的學習方法來訓練深度神經(jīng)網(wǎng)絡(luò)。但由于近幾年該領(lǐng)域發(fā)展迅猛,一些特有的學習手段相繼被提出(如殘差網(wǎng)絡(luò)),因此越來越多的人將其單獨看作一種學習的方法。

機器學習的來源

機器學習直接來源于早期的人工智能領(lǐng)域,傳統(tǒng)的算法包括決策樹、聚類、貝葉斯分類、支持向量機、EM、Adaboost等等。傳統(tǒng)的機器學習算法在指紋識別、基于Haar的人臉檢測、基于HoG特征的物體檢測等領(lǐng)域的應用基本達到了商業(yè)化的要求或者特定場景的商業(yè)化水平,但每前進一步都異常艱難,直到深度學習算法的出現(xiàn)。

最初的深度學習是利用深度神經(jīng)網(wǎng)絡(luò)來解決特征表達的一種學習過程。深度神經(jīng)網(wǎng)絡(luò)本身并不是一個全新的概念,可大致理解為包含多個隱含層的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。為了提高深層神經(jīng)網(wǎng)絡(luò)的訓練效果,人們對神經(jīng)元的連接方法和激活函數(shù)等方面做出相應的調(diào)整。其實有不少想法早年間也曾有過,但由于當時訓練數(shù)據(jù)量不足、計算能力落后,因此最終的效果不盡如人意。深度學習摧枯拉朽般地實現(xiàn)了各種任務(wù),使得似乎所有的機器輔助功能都變?yōu)榭赡堋?/p>

深度學習是機器學習研究中的一個新的領(lǐng)域,其動機在于建立、模擬人腦進行分析學習的神經(jīng)網(wǎng)絡(luò),它模仿人腦的機制來解釋數(shù)據(jù),例如圖像,聲音和文本。同機器學習方法一樣,深度機器學習方法也有監(jiān)督學習與無監(jiān)督學習之分,不同的學習框架下建立的學習模型很是不同。

深度學習的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學習結(jié)構(gòu)。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。

深度學習的概念由Hinton等人于2006年提出?;谏疃戎眯啪W(wǎng)絡(luò)(DBN)提出非監(jiān)督貪心逐層訓練算法,為解決深層結(jié)構(gòu)相關(guān)的優(yōu)化難題帶來希望,隨后提出多層自動編碼器深層結(jié)構(gòu)。此外Lecun等人提出的卷積神經(jīng)網(wǎng)絡(luò)是第一個真正多層結(jié)構(gòu)學習算法,它利用空間相對關(guān)系減少參數(shù)數(shù)目以提高訓練性能。

深度學習是機器學習中一種基于對數(shù)據(jù)進行表征學習的方法。觀測值(例如一幅圖像)可以使用多種方式來表示,如每個像素強度值的向量,或者更抽象地表示成一系列邊、特定形狀的區(qū)域等。而使用某些特定的表示方法更容易從實例中學習任務(wù)(例如,人臉識別或面部表情識別)。深度學習的好處是用非監(jiān)督式或半監(jiān)督式的特征學習和分層特征提取高效算法來替代手工獲取特征。

其實,在機器學習社區(qū)中有很多人都在說“深度學習已死”。不過,這種看法我們并不認同,就像Intel副總裁Gadi Singer所說,深度學習剛剛開始上路,我們即將進入AI的下一階段,而處于最前沿的深度學習是其中很重要的一部分。換句話說,深度學習對于整個AI領(lǐng)域來說,是AI的下一個階段。

想要了解更多深度學習的發(fā)展現(xiàn)狀,還請您親自來參加CIIS 2018大會,我們在深度學習專題論壇等你,不見不散。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103557
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49008

    瀏覽量

    249305
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122785

原文標題:CIIS2018專題論壇之十丨深度學習,AI的下一個階段

文章出處:【微信號:CAAI-1981,微信公眾號:中國人工智能學會】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習模型市場的未來發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?358次閱讀

    嵌入式機器學習的應用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機器學習(Embedded Machine Learning)技術(shù),這是指將機器學習模型部署在資源受限的設(shè)備(如微
    的頭像 發(fā)表于 01-25 17:05 ?657次閱讀
    嵌入式<b class='flag-5'>機器</b><b class='flag-5'>學習</b>的應用特性與軟件開發(fā)環(huán)境

    傳統(tǒng)機器學習方法和應用指導

    在上一篇文章中,我們介紹了機器學習的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機器
    的頭像 發(fā)表于 12-30 09:16 ?1181次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    如何選擇云原生機器學習平臺

    當今,云原生機器學習平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構(gòu)建和部署機器學習應用的首選。然而,市場上的云原生機器
    的頭像 發(fā)表于 12-25 11:54 ?452次閱讀

    zeta在機器學習中的應用 zeta的優(yōu)缺點分析

    在探討ZETA在機器學習中的應用以及ZETA的優(yōu)缺點時,需要明確的是,ZETA一詞在不同領(lǐng)域可能有不同的含義和應用。以下是根據(jù)不同領(lǐng)域的ZETA進行的分析: 一、ZETA在機器學習
    的頭像 發(fā)表于 12-20 09:11 ?1121次閱讀

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統(tǒng)具有人的學習能力以便實現(xiàn)人工智能。因為沒有學習能力的系統(tǒng)很難被認為是具有智能
    的頭像 發(fā)表于 11-16 01:07 ?962次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關(guān)系

    在人工智能領(lǐng)域,機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習機器
    的頭像 發(fā)表于 11-15 09:19 ?1211次閱讀

    eda在機器學習中的應用

    機器學習項目中,數(shù)據(jù)預處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過程中不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機器學習中的首要任務(wù)之一。EDA可以幫助識別
    的頭像 發(fā)表于 11-13 10:42 ?887次閱讀

    具身智能與機器學習的關(guān)系

    具身智能(Embodied Intelligence)和機器學習(Machine Learning)是人工智能領(lǐng)域的兩個重要概念,它們之間存在著密切的關(guān)系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發(fā)表于 10-27 10:33 ?1047次閱讀

    人工智能、機器學習和深度學習存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機器學習——讓算法從數(shù)據(jù)中學習
    發(fā)表于 10-24 17:22 ?2974次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區(qū)別

    RISC-V如何支持不同的AI和機器學習框架和庫?

    RISC-V如何支持不同的AI和機器學習框架和庫?還請壇友們多多指教一下。
    發(fā)表于 10-10 22:24

    【《時間序列與機器學習》閱讀體驗】+ 時間序列的信息提取

    之前對《時間序列與機器學習》一書進行了整體瀏覽,并且非常輕松愉快的完成了第一章的學習,今天開始學習第二章“時間序列的信息提取”。 先粗略的翻閱第二章,內(nèi)容復雜,充斥了大量的定義、推導計
    發(fā)表于 08-14 18:00

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機器學習算法在時間序列預測中的應用,內(nèi)容全面,循序漸進。每一章都經(jīng)過精心設(shè)計,對理論知識進行了詳細的闡述,對實際案例進行了生動的展示,使讀者在理論與實踐
    發(fā)表于 08-12 11:28

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構(gòu)建了時間序列分析的基礎(chǔ)知識,更巧妙地展示了機器學習如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    【《時間序列與機器學習》閱讀體驗】+ 了解時間序列

    收到《時間序列與機器學習》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供了一個讓我學習時間序列及應用的機會! 前言第一段描述了編寫背景: 由此可知,這是一本關(guān)于時間序列進行大數(shù)
    發(fā)表于 08-11 17:55