99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

吳恩達(dá):將引領(lǐng)下一波機(jī)器學(xué)習(xí)技術(shù)”的遷移學(xué)習(xí)到底好在哪?

電子工程師 ? 來(lái)源:未知 ? 作者:工程師李察 ? 2018-10-27 10:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

兩年前,吳恩達(dá)在 NIPS 2016 的 Tutorial 上曾說(shuō)“在監(jiān)督學(xué)習(xí)之后,遷移學(xué)習(xí)將引領(lǐng)下一波機(jī)器學(xué)習(xí)技術(shù)商業(yè)化浪潮。”現(xiàn)實(shí)中不斷有新場(chǎng)景的出現(xiàn),遷移學(xué)習(xí)可以幫助我們更好地處理遇到的新場(chǎng)景。遷移學(xué)習(xí)到底有哪些優(yōu)點(diǎn),能夠成為現(xiàn)在機(jī)器學(xué)習(xí)算法的新焦點(diǎn)?本文將通過(guò)與深度學(xué)習(xí)進(jìn)行對(duì)比,讓大家在應(yīng)用層面了解遷移學(xué)習(xí)的原理及其優(yōu)勢(shì)。

前言

深度學(xué)習(xí)在許多很難用其它方法解決的問(wèn)題上取得了長(zhǎng)足的進(jìn)步。深度學(xué)習(xí)的成功歸功于它與傳統(tǒng)的機(jī)器學(xué)習(xí)的幾個(gè)關(guān)鍵不同點(diǎn),這使得它在處理非結(jié)構(gòu)化數(shù)據(jù)的時(shí)候能夠大放異彩。如今,深度學(xué)習(xí)模型可以玩游戲,檢測(cè)癌癥,與人類交談,以及駕駛汽車。

但是,使深度學(xué)習(xí)強(qiáng)大的這幾個(gè)不同點(diǎn)同時(shí)也使得其成本巨大。你可能聽(tīng)說(shuō)過(guò)深度學(xué)習(xí)的成功需要龐大的數(shù)據(jù)量,昂貴的硬件設(shè)施,甚至更加昂貴的精英工程人才?,F(xiàn)在,一些公司開(kāi)始對(duì)那些可以減少成本的創(chuàng)新想法和技術(shù)特別興奮。比如多任務(wù)學(xué)習(xí)(Multi-task learning),這是一種可以讓機(jī)器學(xué)習(xí)模型一次性從多個(gè)任務(wù)中進(jìn)行學(xué)習(xí)的方法。這種方法的其中一種好處就是,可以減少對(duì)訓(xùn)練數(shù)據(jù)量的需求。

在這篇文章中,我們將會(huì)介紹遷移學(xué)習(xí)(transfer learning),一種可以讓知識(shí)從一個(gè)任務(wù)遷移到另一個(gè)任務(wù)中的機(jī)器學(xué)習(xí)方法。遷移學(xué)習(xí)不需要為你的問(wèn)題重新開(kāi)發(fā)一個(gè)完全定制的解決方案,而是允許你從相關(guān)問(wèn)題中遷移知識(shí),以幫助你更輕松地解決您的自定義問(wèn)題。通過(guò)遷移知識(shí),你可以利用用于獲取這些知識(shí)所需的昂貴資源,包括訓(xùn)練數(shù)據(jù),硬件設(shè)備,研究人員,而這些成本并不需要你來(lái)承擔(dān)。下面讓我們看看遷移學(xué)習(xí)何時(shí)以及是怎樣起作用的。

深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的不同點(diǎn)

遷移學(xué)習(xí)并不是一項(xiàng)新技術(shù),它也不是專門(mén)為深度學(xué)習(xí)服務(wù)的,但是鑒于最近在深度學(xué)習(xí)方面取得的進(jìn)展,它很令人興奮。所以首先,我們需要闡明深度學(xué)習(xí)究竟和傳統(tǒng)的機(jī)器學(xué)習(xí)在哪些方面有所不同。

深度學(xué)習(xí)進(jìn)行底層抽象

機(jī)器學(xué)習(xí)是機(jī)器自動(dòng)學(xué)習(xí)把預(yù)測(cè)值或者標(biāo)簽分配給數(shù)值型輸入(即數(shù)據(jù))的一種方式。這里的難點(diǎn)是,如何確切地確定這個(gè)函數(shù),使得其對(duì)于給定輸入可以生成輸出。不對(duì)函數(shù)添加任何限制條件的話,其可能性(復(fù)雜性)是無(wú)窮無(wú)盡的。為了簡(jiǎn)化這個(gè)任務(wù),根據(jù)我們正在解決的問(wèn)題的類型,相關(guān)領(lǐng)域的專業(yè)知識(shí),或者簡(jiǎn)單的試錯(cuò)方法,我們通常會(huì)在函數(shù)上強(qiáng)加某種類型的結(jié)構(gòu)。一種結(jié)構(gòu)定義了某一類型的機(jī)器學(xué)習(xí)模型。

理論上,有無(wú)限種可能的結(jié)構(gòu)可供選擇,但在實(shí)踐中,大多數(shù)機(jī)器學(xué)習(xí)用例可以通過(guò)應(yīng)用少數(shù)幾種結(jié)構(gòu)中的其中一種來(lái)解決:線性模型,樹(shù)的組合分類器,和支持向量機(jī)是其中的核心。數(shù)據(jù)科學(xué)家的工作就是從這一小組可能的結(jié)構(gòu)中選擇正確的結(jié)構(gòu)。這些模型作為黑盒對(duì)象,可以從許多成熟的機(jī)器學(xué)習(xí)庫(kù)中獲得,并且只需幾行代碼即可訓(xùn)練。舉個(gè)例子,你可以用 Python 的 scikit-learn 庫(kù)像以下這樣訓(xùn)練一個(gè)隨機(jī)森林模型:

或者用 R 來(lái)訓(xùn)練一個(gè)線性回歸模型:

與此不同的是,深度學(xué)習(xí)在更加底層運(yùn)行。深度學(xué)習(xí)不是從一小組的模型結(jié)構(gòu)中進(jìn)行選擇,而是允許開(kāi)發(fā)人員組成任意結(jié)構(gòu)。構(gòu)建塊是一些模塊或者層,可以將其想象成基本的基礎(chǔ)數(shù)據(jù)轉(zhuǎn)換。這意味著當(dāng)我們應(yīng)用深度學(xué)習(xí)時(shí),我們需要打開(kāi)黑盒子了解數(shù)據(jù)轉(zhuǎn)換,而不是把它當(dāng)做被算法固定的一堆參數(shù)。

這種做法使得我們可以構(gòu)建更加強(qiáng)大的模型,但是同時(shí)它也給整個(gè)模型構(gòu)建過(guò)程添加了一種全新的挑戰(zhàn)。盡管深度學(xué)習(xí)社區(qū)已經(jīng)發(fā)表了大量研究,到處都有實(shí)用的深度學(xué)習(xí)指南,或者一些經(jīng)驗(yàn)之談,如何有效地組合這些數(shù)據(jù)轉(zhuǎn)換依然是一個(gè)很困難的過(guò)程。

下面我們考慮一個(gè)極其簡(jiǎn)單的卷積神經(jīng)網(wǎng)絡(luò)圖像分類器,這里是用一個(gè)流行的深度學(xué)習(xí)庫(kù) PyTorch 來(lái)進(jìn)行定義的。

因?yàn)槲覀兪褂玫氖堑讓拥臉?gòu)建塊,我們可以輕松改變模型的某個(gè)單一部件(例如,將F.relu變?yōu)镕.sigmoid)。這樣做可以得到一個(gè)全新的模型架構(gòu),它可能會(huì)產(chǎn)生截然不同的結(jié)果,而且它的可能性,毫不夸張地說(shuō),是無(wú)止境的。

深度學(xué)習(xí)還沒(méi)有被充分地理解

即使給定了一個(gè)固定的神經(jīng)網(wǎng)絡(luò)架構(gòu),訓(xùn)練它也是眾所周知的極其困難。首先,深度學(xué)習(xí)的損失函數(shù)通常不是凸函數(shù),這意味著訓(xùn)練并不一定產(chǎn)生最優(yōu)的可能解。第二,深度學(xué)習(xí)現(xiàn)在還是非常新的技術(shù),它的許多組成部分仍未被充分理解。舉個(gè)例子,批標(biāo)準(zhǔn)化(Batch Normalization)最近備受關(guān)注,因?yàn)樗坪鯇⑵浒谀承┠P椭惺侨〉昧己媒Y(jié)果的關(guān)鍵,但是專家無(wú)法就其原因達(dá)成一致。研究人員 Ali Rahimi 最近在一場(chǎng)機(jī)器學(xué)習(xí)會(huì)議上甚至把深度學(xué)習(xí)與煉金術(shù)相提并論,引發(fā)了一場(chǎng)論戰(zhàn)。

自動(dòng)特征工程

深度學(xué)習(xí)的復(fù)雜性促進(jìn)了一門(mén)叫表示學(xué)習(xí)(representation learning)的技術(shù)的發(fā)展,這也是為什么經(jīng)常有人說(shuō)神經(jīng)網(wǎng)絡(luò)做的是“自動(dòng)特征工程”。簡(jiǎn)單來(lái)說(shuō)就是,我們不是讓人類來(lái)手動(dòng)從數(shù)據(jù)集中提取有效特征,而是構(gòu)建一個(gè)模型,讓模型可以自己學(xué)習(xí)對(duì)于當(dāng)前任務(wù)來(lái)說(shuō)哪些是需要的和有用的特征。把特征工程的任務(wù)交給模型來(lái)處理非常有效,但是代價(jià)是模型需要龐大的數(shù)據(jù)量,也因此需要龐大的計(jì)算能力。

你可以做什么?

和其他機(jī)器學(xué)習(xí)方法相比,深度學(xué)習(xí)太過(guò)于復(fù)雜,看上去似乎無(wú)法將其整合到你的業(yè)務(wù)中。對(duì)于那些資源有限的組織機(jī)構(gòu)來(lái)說(shuō),這種感覺(jué)更加強(qiáng)烈。

對(duì)于那些需要走在前沿的組織機(jī)構(gòu)來(lái)說(shuō),可能的確需要聘請(qǐng)專家和購(gòu)買專業(yè)的硬件設(shè)施。但是很多情況下這不是必需的。有方法可以讓你不需要進(jìn)行大量的投資就可以有效地應(yīng)用深度學(xué)習(xí)技術(shù)。這里就是遷移學(xué)習(xí)可以大展拳腳的地方了。

遷移學(xué)習(xí)可以讓知識(shí)從一個(gè)機(jī)器學(xué)習(xí)模型遷移到另一個(gè)模型上。這些模型可能是對(duì)模型結(jié)構(gòu)進(jìn)行了長(zhǎng)年研究、用相當(dāng)多數(shù)據(jù)集對(duì)模型進(jìn)行訓(xùn)練、用數(shù)以年計(jì)的計(jì)算時(shí)間對(duì)模型進(jìn)行優(yōu)化而得到的結(jié)果。利用遷移學(xué)習(xí),你不需要承擔(dān)上面說(shuō)的任何成本就能獲得這項(xiàng)工作的大部分好處!

什么是遷移學(xué)習(xí)

大多數(shù)機(jī)器學(xué)習(xí)任務(wù)始于零知識(shí),意思是它的結(jié)構(gòu)和模型的參數(shù)是從隨機(jī)猜測(cè)開(kāi)始的。當(dāng)我們說(shuō)模型是從頭開(kāi)始學(xué)習(xí)的時(shí)候,意思也是如此。

隨機(jī)猜測(cè)開(kāi)始訓(xùn)練的一個(gè)貓檢測(cè)模型。通過(guò)它見(jiàn)過(guò)的許多不同的貓,該模型從中整合出相同的模式,逐漸學(xué)習(xí)到貓是什么。

在這種情況下,該模型學(xué)習(xí)到的所有內(nèi)容都來(lái)自于你展示給它的數(shù)據(jù)。但是,這是解決問(wèn)題的唯一方法嗎?在某些情況下,看上去的確如此。

貓檢測(cè)模型在不相關(guān)的應(yīng)用中,例如欺詐檢測(cè),很有可能沒(méi)有什么用處。它只知道如何應(yīng)付貓的圖片,而不是信用卡交易。

但是在某些情況下,我們似乎可以在不同任務(wù)之間共享信息。

貓檢測(cè)模型在相關(guān)任務(wù)中作用很大,例如貓的臉部定位。該檢測(cè)器已經(jīng)知道怎么檢測(cè)貓胡子,鼻子,以及眼睛,所有這些對(duì)于定位貓的臉部都很有用處。

這就是遷移學(xué)習(xí)的本質(zhì):采用一種模型,學(xué)習(xí)如何很好地完成某項(xiàng)任務(wù),將其部分或者所有知識(shí)遷移到一個(gè)相關(guān)的任務(wù)。

想想我們自己的學(xué)習(xí)經(jīng)驗(yàn),就會(huì)發(fā)現(xiàn)這其實(shí)很有道理:我們經(jīng)常遷移以往習(xí)得的技能,這樣可以更快地學(xué)習(xí)新的技能。舉個(gè)例子,學(xué)過(guò)投擲棒球的人不需要重新學(xué)習(xí)拋東西的機(jī)制就能很好地學(xué)習(xí)到怎么扔一個(gè)足球。這些任務(wù)本質(zhì)上是相通的,能夠處理其中一件任務(wù)的話自然而然可以把學(xué)習(xí)到的能力遷移到另一項(xiàng)任務(wù)。

在機(jī)器學(xué)習(xí)領(lǐng)域,可能過(guò)去 5 年最好的例子就是計(jì)算機(jī)視覺(jué)領(lǐng)域?,F(xiàn)在幾乎沒(méi)人會(huì)從頭開(kāi)始訓(xùn)練一個(gè)圖像模型。相反,我們會(huì)從一個(gè)預(yù)訓(xùn)練好的模型開(kāi)始,這個(gè)模型已經(jīng)知道怎么區(qū)分一些簡(jiǎn)單的對(duì)象,例如貓,狗,還有雨傘。學(xué)習(xí)區(qū)分圖像的模型首先學(xué)習(xí)如何檢測(cè)一些通用圖像特征,例如邊緣,形狀,文本,以及臉部。預(yù)訓(xùn)練模型具有以上這些的基本技能(還有更加具體的技能,例如區(qū)分狗和貓的能力)。

此時(shí),預(yù)訓(xùn)練的分類模型可以通過(guò)添加層或者在一個(gè)新的數(shù)據(jù)集上重新訓(xùn)練,來(lái)繼承那些花費(fèi)巨大而獲得的基本技能,然后將其延伸到新的任務(wù)。這就是遷移學(xué)習(xí)。

這種方法的好處很明顯。

遷移學(xué)習(xí)訓(xùn)練數(shù)據(jù)量需求量更小

當(dāng)你在一個(gè)與貓相關(guān)的新任務(wù)中重復(fù)使用你最喜愛(ài)的貓檢測(cè)模型時(shí),你的模型已經(jīng)擁有了“一百萬(wàn)只貓的智慧”,這意味著你不需要再使用那么多的貓圖片來(lái)訓(xùn)練新任務(wù)了。減少訓(xùn)練數(shù)據(jù)量可以讓你在只有很少數(shù)據(jù),或者要獲得更多數(shù)據(jù)的成本過(guò)高或者不可能獲得更多數(shù)據(jù)的情況下也能訓(xùn)練,同時(shí)可以讓你在比較廉價(jià)的硬件設(shè)施上更快地訓(xùn)練模型。

遷移學(xué)習(xí)訓(xùn)練模型泛化能力更強(qiáng)

遷移學(xué)習(xí)可以改進(jìn)模型的泛化能力,或者說(shuō)增強(qiáng)其在非訓(xùn)練數(shù)據(jù)上分類良好的能力。這是因?yàn)樵谟?xùn)練預(yù)訓(xùn)練模型時(shí),是有目的性地讓模型可以學(xué)習(xí)到對(duì)相關(guān)任務(wù)都很有用的通用特征。當(dāng)模型遷移到一個(gè)新任務(wù)時(shí),它將很難過(guò)擬合新的訓(xùn)練數(shù)據(jù),因?yàn)樗鼘H從一個(gè)很一般的知識(shí)庫(kù)中繼續(xù)學(xué)習(xí)而已。構(gòu)建一個(gè)泛化能力強(qiáng)的模型是機(jī)器學(xué)習(xí)中最難以及最重要的部分之一。

遷移學(xué)習(xí)訓(xùn)練過(guò)程更加魯棒

從一個(gè)預(yù)訓(xùn)練的模型開(kāi)始,也可以避免訓(xùn)練一個(gè)帶有數(shù)百萬(wàn)參數(shù)的復(fù)雜模型,這個(gè)過(guò)程非常令人沮喪,非常不穩(wěn)定,而且令人困惑。遷移學(xué)習(xí)可以將可訓(xùn)練參數(shù)的數(shù)量減少多達(dá) 100%,使得訓(xùn)練更穩(wěn)定,而且更容易調(diào)試。

遷移學(xué)習(xí)降低深度學(xué)習(xí)的入門(mén)門(mén)檻

最后,遷移學(xué)習(xí)降低深度學(xué)習(xí)的門(mén)檻,因?yàn)槟悴恍枰蔀閷<揖湍塬@得專家級(jí)的結(jié)果。舉例來(lái)說(shuō),流行的圖像分類模型 Resnet-50,這個(gè)特定的結(jié)構(gòu)是怎么選擇的呢?這是許多深度學(xué)習(xí)專家的多年研究和實(shí)驗(yàn)的結(jié)果。這個(gè)復(fù)雜的結(jié)構(gòu)中包含有 2500 萬(wàn)個(gè)權(quán)重,如果沒(méi)有對(duì)這個(gè)模型中各個(gè)部件的深入了解,從頭優(yōu)化這些權(quán)重可以說(shuō)是幾乎不可能的任務(wù)。幸運(yùn)的是,有了遷移學(xué)習(xí),你可以重用這個(gè)復(fù)雜的結(jié)構(gòu),以及這些優(yōu)化過(guò)的權(quán)重,因此顯著降低了深度學(xué)習(xí)的入門(mén)門(mén)檻。

多任務(wù)學(xué)習(xí)又是什么?

遷移學(xué)習(xí)是用于訓(xùn)練機(jī)器學(xué)習(xí)模型的知識(shí)共享技術(shù)的其中一種,已被證明是非常有效的。目前,知識(shí)共享技術(shù)中最有趣的兩種就是遷移學(xué)習(xí)和多任務(wù)學(xué)習(xí)。在遷移學(xué)習(xí)中,模型首先在單個(gè)任務(wù)中進(jìn)行訓(xùn)練,然后可以用于相關(guān)任務(wù)的起始點(diǎn)。在學(xué)習(xí)相關(guān)任務(wù)時(shí),原始的被遷移模型會(huì)學(xué)習(xí)如何專門(mén)處理新的任務(wù),而不需要擔(dān)心會(huì)不會(huì)影響其在原來(lái)任務(wù)上的效果。而在多任務(wù)學(xué)習(xí)中,單個(gè)模型一次性學(xué)習(xí)處理多個(gè)任務(wù),對(duì)模型的性能評(píng)估則取決于它學(xué)習(xí)之后能夠多好地完成這些任務(wù)。后續(xù)我們也會(huì)分析討論更過(guò)有關(guān)多任務(wù)學(xué)習(xí)的好處以及其何時(shí)能起作用。

結(jié)論

遷移學(xué)習(xí)是一項(xiàng)知識(shí)共享技術(shù),其可以減少構(gòu)建深度學(xué)習(xí)模型時(shí)對(duì)訓(xùn)練數(shù)據(jù)量,計(jì)算能力,以及工程人才的依賴。由于深度學(xué)習(xí)可以提供與傳統(tǒng)機(jī)器學(xué)習(xí)相比的顯著改進(jìn),遷移學(xué)習(xí)成為一項(xiàng)必不可少的工具。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3507

    瀏覽量

    50252
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8499

    瀏覽量

    134394
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5557

    瀏覽量

    122685

原文標(biāo)題:吳恩達(dá)說(shuō)“將引領(lǐng)下一波機(jī)器學(xué)習(xí)技術(shù)”的遷移學(xué)習(xí)到底好在哪?

文章出處:【微信號(hào):rgznai100,微信公眾號(hào):rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    在人工智能和機(jī)器技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)
    的頭像 發(fā)表于 02-19 15:49 ?433次閱讀

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編探討機(jī)器學(xué)習(xí)模型市場(chǎng)
    的頭像 發(fā)表于 02-13 09:39 ?338次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指機(jī)
    的頭像 發(fā)表于 01-25 17:05 ?611次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?1123次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?432次閱讀

    zeta在機(jī)器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    的應(yīng)用(基于低功耗廣域物聯(lián)網(wǎng)技術(shù)ZETA) ZETA作為種低功耗廣域物聯(lián)網(wǎng)(LPWAN)技術(shù),雖然其直接應(yīng)用于機(jī)器學(xué)習(xí)的場(chǎng)景可能并不常見(jiàn),
    的頭像 發(fā)表于 12-20 09:11 ?1097次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)分析技術(shù)的創(chuàng)新源之
    的頭像 發(fā)表于 11-16 01:07 ?942次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為種專門(mén)為深度學(xué)習(xí)機(jī)
    的頭像 發(fā)表于 11-15 09:19 ?1160次閱讀

    智浦eIQ AI和機(jī)器學(xué)習(xí)開(kāi)發(fā)軟件增加兩款新工具

    智浦在eIQ AI和機(jī)器學(xué)習(xí)開(kāi)發(fā)軟件中增加了帶有檢索增強(qiáng)生成(RAG)與微調(diào)的生成式人工智能(GenAI)流程和eIQ Time Series Studio,以便在小型微控制器(MCU)、功能更強(qiáng)大的大型應(yīng)用處理器(MPU)等
    的頭像 發(fā)表于 11-01 11:39 ?1029次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2906次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    下一機(jī)器技術(shù):工業(yè)自動(dòng)化的五大趨勢(shì)

    隨著人工智能(AI)技術(shù)的迅猛發(fā)展和全球制造業(yè)的轉(zhuǎn)型升級(jí),下一機(jī)器技術(shù)正在引領(lǐng)工業(yè)自動(dòng)化領(lǐng)域的新
    的頭像 發(fā)表于 10-23 15:52 ?1172次閱讀

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    之前對(duì)《時(shí)間序列與機(jī)器學(xué)習(xí)書(shū)進(jìn)行了整體瀏覽,并且非常輕松愉快的完成了第章的學(xué)習(xí),今天開(kāi)始學(xué)習(xí)
    發(fā)表于 08-14 18:00

    預(yù)訓(xùn)練和遷移學(xué)習(xí)的區(qū)別和聯(lián)系

    預(yù)訓(xùn)練和遷移學(xué)習(xí)是深度學(xué)習(xí)機(jī)器學(xué)習(xí)領(lǐng)域中的兩個(gè)重要概念,它們?cè)谔岣吣P托阅?、減少訓(xùn)練時(shí)間和降低對(duì)數(shù)據(jù)量的需求方面發(fā)揮著關(guān)鍵作用。本文將從定
    的頭像 發(fā)表于 07-11 10:12 ?2010次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    深度學(xué)習(xí)和自然語(yǔ)言處理(NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域中兩個(gè)非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文介紹深度學(xué)習(xí)與NLP的區(qū)別。 深度學(xué)習(xí)簡(jiǎn)介 深度
    的頭像 發(fā)表于 07-05 09:47 ?1596次閱讀

    遷移學(xué)習(xí)的基本概念和實(shí)現(xiàn)方法

    遷移學(xué)習(xí)(Transfer Learning)是機(jī)器學(xué)習(xí)領(lǐng)域中的個(gè)重要概念,其核心思想是利用在
    的頭像 發(fā)表于 07-04 17:30 ?3433次閱讀