99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何利用射頻采樣ADC來破解寬帶難題?

電機控制設(shè)計加油站 ? 來源:未知 ? 作者:胡薇 ? 2018-10-09 09:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

現(xiàn)代電子戰(zhàn)(EW)系統(tǒng)開發(fā)人員面臨著眾多挑戰(zhàn),其中包括日益增加的頻譜擁堵以及以更高的探測靈敏度對更寬的帶寬進行監(jiān)視等難題。此外,系統(tǒng)開發(fā)人員還面臨巨大壓力,要縮短開發(fā)時間,眾多現(xiàn)有開發(fā)模型難以應(yīng)對,因而需要各類定制型硬件和固件設(shè)計,以便在尺寸、重量和功率三重限制下提升性能水平。

新型每秒千兆采樣(GSPS)高速轉(zhuǎn)換器、高性能FPGA和FPGAIP內(nèi)核已經(jīng)開始改變現(xiàn)狀,為設(shè)計師帶來了現(xiàn)成的解決方案和可配置的構(gòu)建模塊,助其從容面對新一代挑戰(zhàn)。一種采用ADI GSPS ADC并且搭載Altera? FPGA和通道化IP的參考設(shè)計將向我們展示,設(shè)計師如何在縮短上市時間的條件下,打造出最先進的電子情報和數(shù)字RF存儲器系統(tǒng)解決方案。

電子戰(zhàn)概述

電子戰(zhàn)系統(tǒng)可以識別和反擊監(jiān)視與跟蹤雷達等電子威脅。電子戰(zhàn)系統(tǒng)通常分為電子支援(ES)、電子攻擊(EA)和電子保護(EP)三類。

電子支援系統(tǒng)用于攔截和測量信號參數(shù),以識別信號源并進行威脅分析。電子攻擊系統(tǒng)會產(chǎn)生干擾信號,以壓制真實脈沖。數(shù)字射頻存儲器(DRFM)是一種用于欺騙雷達的欺騙技術(shù)。電子保護系統(tǒng)主要用于處理和存儲輸入信號以構(gòu)建信號數(shù)據(jù)庫。該數(shù)據(jù)庫是一個持續(xù)更新的查詢表,用于識別未來雷達系統(tǒng)。傳統(tǒng)上,這些系統(tǒng)是在模擬平臺上開發(fā)的?,F(xiàn)代系統(tǒng)的數(shù)字化水平更高,可以利用可編程邏輯器件強大的信號處理能力。

在這些系統(tǒng)中,不明目標威脅的探測需要一個可以工作于較寬頻段的接收器,以識別威脅并發(fā)動對抗措施。典型的電子戰(zhàn)系統(tǒng)的工作頻率范圍是直流至20 GHz。在寬帶寬要求以外,實戰(zhàn)電子戰(zhàn)系統(tǒng)還要求高動態(tài)范圍、高靈敏度和精確的脈沖特性描述性能,新系統(tǒng)也要以更快的速度、更高的靈敏度監(jiān)視目標帶寬。電子戰(zhàn)系統(tǒng)接收到的輸入信號可能來自眾多不同來源,并且需要識別和區(qū)分每一個來源,此時,情況變得更加復(fù)雜。在敵方有意為之的干擾以外,不斷增加的頻譜擁堵,特別是通信基礎(chǔ)設(shè)施的快速擴張導(dǎo)致的頻譜擁堵問題進一步增加了有效探測的難度。

尺寸更小、重量更輕、功率更低的復(fù)雜系統(tǒng)使開發(fā)周期變得越來越長。然而,新一代現(xiàn)成解決方案和可編程構(gòu)建模塊可為這些挑戰(zhàn)提供解決方案。對任何電子戰(zhàn)系統(tǒng)來說,兩個關(guān)鍵構(gòu)建模塊是模數(shù)轉(zhuǎn)換器和實時通道化IP,我們將進一步考察這兩個關(guān)鍵構(gòu)建模塊,展示如何應(yīng)對這些挑戰(zhàn)。

電子戰(zhàn)系統(tǒng)的ADC瓶頸問題

在許多情況下,高速ADC從模擬域向數(shù)字域的過渡是電子支援系統(tǒng)、電子攻擊系統(tǒng)和電子保護系統(tǒng)的限制因素,在此,系統(tǒng)架構(gòu)師往往面臨一個難題。成本和系統(tǒng)尺寸最小化通常是重中之重,但系統(tǒng)設(shè)計師還必須在提高瞬時監(jiān)視帶寬以最大程度地增加攔截概率的需求,與如何將帶內(nèi)高功率信號降低系統(tǒng)靈敏度的影響最小化之間找到最佳平衡。這些要求在轉(zhuǎn)換器設(shè)計和將信號內(nèi)容耦合到轉(zhuǎn)換器的前端設(shè)計方面帶來了挑戰(zhàn)。即使轉(zhuǎn)換器本身擁有出色的性能,前端也必須能維持信號質(zhì)量,結(jié)果促使設(shè)計師不斷超越高速ADC的極限,以提高性能、降低成本。

圖1所示為一個簡單的電子戰(zhàn)系統(tǒng)。該系統(tǒng)的主要特性為一個射頻接收器(用于下變頻和選擇要監(jiān)視的目標頻帶)、用于轉(zhuǎn)換模數(shù)域數(shù)據(jù)的ADC以及數(shù)字信號處理引擎,該引擎通常是一個FPGA,配置為探測、確定、分析和管理目標信號的存儲。DRFM和電子攻擊系統(tǒng)也包括一個采用高速DAC的相應(yīng)發(fā)射鏈。

圖1. 典型電子戰(zhàn)架構(gòu)信號鏈

從歷史上來看,在增加瞬時帶寬的同時維持需要的線性度需要使用多個重疊接收器或一種交錯式架構(gòu)。重疊的接收器各自數(shù)字化所需帶寬的一部分,并用數(shù)字信號處理技術(shù)把來自各個通道的數(shù)據(jù)和可觀測頻譜重新組合起來。對于交錯式架構(gòu),一般要搭配校準使用,以便最大限度地減小轉(zhuǎn)換器之間的相差、失調(diào)差和增益差。兩種方案的實現(xiàn)成本都比較高,但數(shù)字信號處理往往會根據(jù)實現(xiàn)需求進行定制。

ADI的新型RF采樣ADC (如AD9625)為新一代系統(tǒng)提供了解決方案,不但可以提供更大的瞬時帶寬,同時還具有更高的線性度,能夠維持所需要的靈敏度水平。AD9625是一款2.5 GSPS、12位ADC,可增進高帶寬交流性能,在1 GHz輸入下,其典型寬帶SNR/SFDR分別達到前所未有的57 dB/80 dB。另外,這款A(yù)DC還支持確定到達角往往需要的多轉(zhuǎn)換器同步,集成了數(shù)字下變頻器(DDC)以便抽取和觀測輸出頻譜的較小部分。

AD9625能支持超過3 GHz的小信號模擬帶寬,可為系統(tǒng)設(shè)計師提供很大的IF定位靈活性。憑借第一和第二奈奎斯特采樣選項和超過1 GHz的可用帶寬,設(shè)計師可以最大化前端接收器架構(gòu)的性能,實現(xiàn)濾波和系統(tǒng)復(fù)雜性的最佳平衡。

ADI推出了支持并行接口和串行接口(包括JESD204B標準)的器件。這對于眾多電子戰(zhàn)系統(tǒng)的高數(shù)據(jù)速率和低延遲要求是極其重要的。

為了便于快速制作原型和系統(tǒng)開發(fā),AD9625以VITA 42/FPGA夾層卡(FMC)平臺的形式提供(見圖2)。該平臺提供了一些參考設(shè)計,可借以了解如何優(yōu)化ADC前方的信號調(diào)理以實現(xiàn)性能優(yōu)化;同時,平臺還可確保ADC與處理單元之間的數(shù)據(jù)處理接口擁有充足的帶寬,以便在仍然使用CoT架構(gòu)的條件下,支持來自轉(zhuǎn)換器的實時全速率數(shù)據(jù)傳輸需求。結(jié)果打造出一款高效的架構(gòu),集成2.5 GSPS ADC COTS解決方案,以最小尺寸提供高速導(dǎo)管。

圖2. AD9625 (2500 MSPS、12位FMC板,帶同步支持)。(PN:AD-FMCADC2-EBZ)

通道選擇器概述

盡管電子攻擊系統(tǒng)、電子支援系統(tǒng)和電子保護系統(tǒng)中的信號都各有特點,但它們都有一個共同的組件,即數(shù)字通道化接收器,也稱通道選擇器。通道選擇器把一個寬帶寬拆分成小帶寬,以便把目標信號與噪聲和干擾信號分開,從而在單個子通道中可靠地檢測到低SNR和時間敏感信號。多數(shù)數(shù)字通道化接收器都由一個濾波器組和快速傅里葉變換(FFT)組成。

作為設(shè)計工程師,這里面臨的一個挑戰(zhàn)是,每次設(shè)計或升級新的電子戰(zhàn)系統(tǒng)時,通常都要求開發(fā)更加復(fù)雜的通道選擇器。這是因為新設(shè)計通常會導(dǎo)致必要的硬件升級,以支持速率更高的轉(zhuǎn)換器和更高的處理性能,以應(yīng)對不斷變化的全球威脅。為了加快通道選擇器的開發(fā)步伐,降低內(nèi)部研發(fā)(IRAD)成本,Altera開發(fā)了一款超高采樣速率的FFT IP和FIR濾波器IP內(nèi)核,能夠處理多-GSPS轉(zhuǎn)換器輸入。這些IP內(nèi)核可根據(jù)多種輸入?yún)?shù),優(yōu)化您的解決方案,如圖3所示。

圖3. Altera超高采樣速率FFT配置

圖4. 一般電子戰(zhàn)系統(tǒng)框圖

圖4通過一般電子戰(zhàn)系統(tǒng)框圖描述了通道選擇器的作用,在該圖中,先對數(shù)字化輸入射頻(RF)寬帶信號進行下變頻和數(shù)字化處理,然后饋入通道化接收器之中。對各通道的輸出進行信號檢測和估算,以便把威脅信號與中立方和友方信號分辨開來。一旦發(fā)現(xiàn)威脅且有數(shù)據(jù)作為支撐,某些電子戰(zhàn)系統(tǒng)就會通過干擾對抗威脅。在此過程中,接收器可能會產(chǎn)生各種干擾信號。

在敵方發(fā)射機中,這些干擾信號可能表現(xiàn)為陷波白噪聲或再生虛假反射信號(即DRFM)。干擾信號通過反相通道選擇器,后者的作用是重構(gòu)寬帶反射信號。反射信號在上變頻回敵方發(fā)射機之后再發(fā)射。

硬件演示

項目展示的是ADC接口和通道選擇器功能。一個信號發(fā)生器產(chǎn)生一個正弦信號音,作為AD9625的輸入。AD9625 ADC輸出端通過行業(yè)標準FMC接口連接至Arria-V SoC開發(fā)套件。JESD204B標準定義了各種通道配置條件下邏輯器件的數(shù)據(jù)速率。在本演示中,JESD204B接口配置為使用8通道收發(fā)器模式,如圖5A和圖5B所示。

通過JESD204B接口接收的樣本饋入通道選擇器IP中,后者配置為用16條輸入線并行接收16個樣本(圖4中的參數(shù)M)。根據(jù)FFT點的數(shù)量,把一個全FFT幀分為多個時隙。例如,一個1024點FFT需要1024/16 = 64個時隙。濾波器組系數(shù)和FFT處理級會根據(jù)時隙自動切換。

通道選擇器IP是用DSP高級版生成器(DSPBA)開發(fā)的,這是來自Altera的一款基于模型的設(shè)計流工具。借助該工具,信號處理工程師可以在MATLAB/Simulink環(huán)境中設(shè)計、評估和驗證其算法。

當算法為最優(yōu)時,DSPBA會生成可以部署在Altera FPGA上的代碼。通道選擇器輸出存儲在片內(nèi)存儲器中,并通過Altera系統(tǒng)在環(huán)(SIL)工具進行驗證。SIL用一個MATLAB API來觸發(fā)片內(nèi)寄存器,開始記錄,以用于數(shù)據(jù)可視化。一旦觸發(fā),則會對FFT處理執(zhí)行一次迭代,并把產(chǎn)生的數(shù)據(jù)存儲到片內(nèi)SRAM中。MATLAB API通過Altera Avalon存儲器圖把數(shù)據(jù)從SRAM提取到MATLAB主機中。上傳到MATLAB之后,則會在屏幕上繪制樣本圖。

IP的集成是在Qsys中完成的。Qsys是Altera推出的一款集成工具,通過提供集成框架,可以大幅縮短開發(fā)流程。運用圖形用戶界面即可實現(xiàn)層級式IP重用和互聯(lián)基礎(chǔ)設(shè)施。

圖5A. AD9625通過JESD204B接口連接Altera Arria V

圖5B. 面向Altera系統(tǒng)在環(huán)的通道選擇器JESD204B輸入和Avalon存儲器圖

創(chuàng)建一個Qsys項目,以集成通道選擇器IP和JESD204B IP。除了通道選擇器IP集成以外,項目還集成了控制功能,以支持連接ADC的SPI配置接口。

通道選擇器可以通過MATLAB設(shè)置腳本輕松切換為不同的FFT大小。這種靈活性為將來的升級路徑提供了保障,同時還有可能在不同系統(tǒng)配置之間實現(xiàn)設(shè)計的重復(fù)利用。例如,圖6展示了來自SIL的4096點FFT輸出。

圖6. 4k-FFT通道選擇器通過SIL的輸出圖示例

結(jié)論

通過新一代高速轉(zhuǎn)換器打造的解決方案可以提供更高的瞬時帶寬而不犧牲系統(tǒng)靈敏度,同時還能在頻率規(guī)劃方面提供更大的靈活性,或者消除前端RF帶上的下混頻級的必要性。然而,在1 GHz范圍內(nèi)實現(xiàn)帶寬數(shù)據(jù)分析可能對高性能系統(tǒng)的設(shè)計造成挑戰(zhàn)。

為了解決這個問題,可以利用通道選擇器來分析這些寬帶寬同時維持高性能。這些新型GSPS RF ADC加上新型可配置通道選擇器IP內(nèi)核為新一代系統(tǒng)設(shè)計師提供了一種更快的解決方案,可以很好地適應(yīng)不斷變化的電子戰(zhàn)環(huán)境。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 寬帶
    +關(guān)注

    關(guān)注

    4

    文章

    1033

    瀏覽量

    63004
  • adc
    adc
    +關(guān)注

    關(guān)注

    99

    文章

    6709

    瀏覽量

    549280
  • 射頻采樣
    +關(guān)注

    關(guān)注

    0

    文章

    27

    瀏覽量

    4659

原文標題:用射頻采樣ADC破解寬帶難題

文章出處:【微信號:motorcontrol365,微信公眾號:電機控制設(shè)計加油站】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    ADC采樣率與信號頻率:關(guān)鍵概念與設(shè)計要點

    。高分辨率ADC需要更長的建立時間(Settling time)確保信號穩(wěn)定在1/2LSB范圍內(nèi)。12位ADC的建立時間通常是時間常數(shù)的8.4倍,這限制了其最高采樣率。因此,在需要高
    發(fā)表于 05-13 09:53

    ADC12D1800rf射頻采樣可以采集直流信號嗎?

    ADC12D1800rf這種射頻采樣ADC可以采集直流信號嗎? 這是差分輸入的,直流信號不能變差分吧,不知道是否有設(shè)置可以讓這芯片采集直流電壓信號。
    發(fā)表于 01-14 07:12

    電線EMC電磁兼容性測試整改:破解電磁干擾的難題

    深圳南柯電子|電線EMC電磁兼容性測試整改:破解電磁干擾的難題
    的頭像 發(fā)表于 12-11 11:19 ?833次閱讀
    電線EMC電磁兼容性測試整改:<b class='flag-5'>破解</b>電磁干擾的<b class='flag-5'>難題</b>

    ADC噪聲系數(shù)對射頻接收器的影響

    本期,為大家?guī)淼氖恰?b class='flag-5'>ADC 噪聲系數(shù)如何影響射頻接收器設(shè)計》,我們將深入探討如何計算射頻采樣 ADC 的噪聲系數(shù),并說明
    的頭像 發(fā)表于 11-25 15:32 ?1417次閱讀
    <b class='flag-5'>ADC</b>噪聲系數(shù)對<b class='flag-5'>射頻</b>接收器的影響

    高速ADC設(shè)計中采樣時鐘影響的考量

    ? 在使用高速模數(shù)轉(zhuǎn)換器 (ADC) 進行設(shè)計時,需要考慮很多因素,其中 ADC 采樣時鐘的影響對于滿足特定設(shè)計要求至關(guān)重要。關(guān)于 ADC 采樣
    的頭像 發(fā)表于 11-13 09:49 ?1791次閱讀
    高速<b class='flag-5'>ADC</b>設(shè)計中<b class='flag-5'>采樣</b>時鐘影響的考量

    使用射頻全差分放大器提高射頻采樣ADC性能

    為了在無線通信系統(tǒng)中實現(xiàn)更高的數(shù)據(jù)速率以及在雷達中使用更窄的脈沖來解析近距離目標,對測試和測量儀器的性能和帶寬提出了更高的要求。高帶寬示波器和射頻數(shù)字轉(zhuǎn)換器等射頻(RF)測試和測量儀器可使用射頻
    的頭像 發(fā)表于 11-12 11:45 ?986次閱讀
    使用<b class='flag-5'>射頻</b>全差分放大器提高<b class='flag-5'>射頻</b><b class='flag-5'>采樣</b><b class='flag-5'>ADC</b>性能

    如何優(yōu)化adc采樣

    在數(shù)字信號處理領(lǐng)域,ADC是將模擬信號轉(zhuǎn)換為數(shù)字信號的關(guān)鍵組件。采樣率,即ADC每秒采集樣本的次數(shù),對信號的準確性和系統(tǒng)的整體性能有著直接的影響。 ADC
    的頭像 發(fā)表于 10-31 11:04 ?1698次閱讀

    STM32的ADC采樣及各式濾波算法實現(xiàn)

    本文為手把手教學(xué)ADC采樣及各式濾波算法的教程,本教程的MCU采用STM32F103ZET6。以HAL庫的ADC采樣函數(shù)為基礎(chǔ)進行教學(xué),通過各式常見濾波的實驗結(jié)果進行分析對比,搭配VO
    的頭像 發(fā)表于 10-28 10:51 ?7974次閱讀
    STM32的<b class='flag-5'>ADC</b><b class='flag-5'>采樣</b>及各式濾波算法實現(xiàn)

    adc3101的采樣率由什么決定呢?

    想問一個問題,困擾了我很久。 adc3101作為i2s從機,MCLK和BCLK都是外部輸入,硬件上僅僅接了一個MIC,并且選擇BCLK作為PLLCLK_IN,那么adc3101的采樣率由什么
    發(fā)表于 10-28 06:09

    ADC采樣保持電路的工作原理和技術(shù)指標

    ADC(Analog-to-Digital Converter,模數(shù)轉(zhuǎn)換器)采樣保持電路是ADC轉(zhuǎn)換過程中的一個重要組成部分,其工作原理和技術(shù)指標對于確保ADC轉(zhuǎn)換的精度和可靠性至關(guān)重
    的頭像 發(fā)表于 10-05 14:33 ?4792次閱讀
    <b class='flag-5'>ADC</b><b class='flag-5'>采樣</b>保持電路的工作原理和技術(shù)指標

    基于TI射頻直接采樣ADC(ADC32RF80)的RX鏈路設(shè)計

    電子發(fā)燒友網(wǎng)站提供《基于TI射頻直接采樣ADC(ADC32RF80)的RX鏈路設(shè)計.pdf》資料免費下載
    發(fā)表于 09-26 09:08 ?0次下載
    基于TI<b class='flag-5'>射頻</b>直接<b class='flag-5'>采樣</b><b class='flag-5'>ADC</b>(<b class='flag-5'>ADC</b>32RF80)的RX鏈路設(shè)計

    ADC采樣

    電子發(fā)燒友網(wǎng)站提供《ADC采樣.pdf》資料免費下載
    發(fā)表于 08-30 09:39 ?0次下載
    <b class='flag-5'>ADC</b>過<b class='flag-5'>采樣</b>

    關(guān)于ADC采樣的問題

    請教一下,我在使用28035芯片時,利用epwm觸發(fā)ADC采樣,但是發(fā)現(xiàn)改變epwm周期值改變不了ADC頻率,之后將TBCTL.BIT.PHSEN這個寄存器置0后(原本置1),就可以通
    發(fā)表于 08-28 09:16

    ADC12DJ5200-SEP雙通道12位射頻采樣模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《ADC12DJ5200-SEP雙通道12位射頻采樣模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 07-22 11:06 ?0次下載
    <b class='flag-5'>ADC</b>12DJ5200-SEP雙通道12位<b class='flag-5'>射頻</b><b class='flag-5'>采樣</b>模數(shù)轉(zhuǎn)換器(<b class='flag-5'>ADC</b>)數(shù)據(jù)表

    ADC12DJ5200SE 10.4GSPS單通道或5.2GSPS雙通道12位射頻采樣模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)表

    電子發(fā)燒友網(wǎng)站提供《ADC12DJ5200SE 10.4GSPS單通道或5.2GSPS雙通道12位射頻采樣模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)表.pdf》資料免費下載
    發(fā)表于 07-22 10:32 ?0次下載
    <b class='flag-5'>ADC</b>12DJ5200SE 10.4GSPS單通道或5.2GSPS雙通道12位<b class='flag-5'>射頻</b><b class='flag-5'>采樣</b>模數(shù)轉(zhuǎn)換器(<b class='flag-5'>ADC</b>)數(shù)據(jù)表