隨著電子科學(xué)技術(shù)的迅速發(fā)展,單基地雷達(dá)存在著很大的局限性,小型雙多基地雷達(dá)的應(yīng)用越來(lái)越廣泛,需求日趨迫切。衛(wèi)星通信具有通信距離遠(yuǎn),通信容量大,業(yè)務(wù)類型多,傳送不受地理?xiàng)l件限制等優(yōu)點(diǎn),在通信、廣播、導(dǎo)航定位、氣象服務(wù)、遙感遙測(cè)、地球資源勘測(cè)、環(huán)境監(jiān)測(cè)、技術(shù)偵查等商用和軍事應(yīng)用方面應(yīng)用廣泛。其中,海事衛(wèi)星通信系統(tǒng)在移動(dòng)衛(wèi)星通信中具有不可替代性,發(fā)展前景廣闊。復(fù)合式的雙基地雷達(dá)特別適合于空中交通管制系統(tǒng),它比單基地雷達(dá)的測(cè)速效率高,精度好;此外雙基地雷達(dá)的目標(biāo)分辨能力較高,在分析大氣的垂直結(jié)構(gòu)時(shí)要比單雷達(dá)更優(yōu)越,而大氣的垂直結(jié)構(gòu)則是氣象分析的重點(diǎn)。CAN是控制器局域網(wǎng)絡(luò)(Controller Area Network, CAN)的簡(jiǎn)稱,是由研發(fā)和生產(chǎn)汽車電子產(chǎn)品著稱的德國(guó)BOSCH公司開發(fā)了的,并最終成為國(guó)際標(biāo)準(zhǔn)(ISO118?8)。是國(guó)際上應(yīng)用最廣泛的現(xiàn)場(chǎng)總線之一。 在北美和西歐,CAN總線協(xié)議已經(jīng)成為汽車計(jì)算機(jī)控制系統(tǒng)和嵌入式工業(yè)控制局域網(wǎng)的標(biāo)準(zhǔn)總線,并且擁有以CAN為底層協(xié)議專為大型貨車和重工機(jī)械車輛設(shè)計(jì)的J1939協(xié)議。近年來(lái),其所具有的高可靠性和良好的錯(cuò)誤檢測(cè)能力受到重視,被廣泛應(yīng)用于汽車計(jì)算機(jī)控制系統(tǒng)和環(huán)境溫度惡劣、電磁輻射強(qiáng)和振動(dòng)大的工業(yè)環(huán)境。
1 CAN總線多夫線控制系統(tǒng)的組成
CAN 的高性能和可靠性已被認(rèn)同,并被廣泛地應(yīng)用于工業(yè)自動(dòng)化、船舶、醫(yī)療設(shè)備、工業(yè)設(shè)備等方面?,F(xiàn)場(chǎng)總線是當(dāng)今自動(dòng)化領(lǐng)域技術(shù)發(fā)展的熱點(diǎn)之一,被譽(yù)為自動(dòng)化領(lǐng)域的計(jì)算機(jī)局域網(wǎng)。它的出現(xiàn)為分布式控制系統(tǒng)實(shí)現(xiàn)各節(jié)點(diǎn)之間實(shí)時(shí)、可靠的數(shù)據(jù)通信提供了強(qiáng)有力的技術(shù)支持。在當(dāng)前的汽車產(chǎn)業(yè)中,出于對(duì)安全性、舒適性、方便性、低公害、低成本的要求,各種各樣的電子控制系統(tǒng)被開發(fā)了出來(lái)。由于這些系統(tǒng)之間通信所用的數(shù)據(jù)類型及對(duì)可靠性的要求不盡相同,由多條總線構(gòu)成的情況很多,線束的數(shù)量也隨之增加。
多天線控制系統(tǒng)由本地控制組件、CAN總線和天線控制器組成,如圖1所示。其中本地控制組件包括本控面板、電源、微處理器和電機(jī)驅(qū)動(dòng)電路,負(fù)責(zé)天線的位置信息采集和電機(jī)控制算法的實(shí)現(xiàn);CAN總線采用CAN 2.0B標(biāo)準(zhǔn)協(xié)議進(jìn)行數(shù)據(jù)傳輸,接口芯片采用SJA1000,完成物理鏈路層和數(shù)據(jù)鏈路層兩層功能;天線控制器包括顯示面板、控制按鍵、手輪、微處理器等,用于接收用戶操作指令,顯示指定天線的狀態(tài)和控制天線的運(yùn)動(dòng)方式。
在由CAN總線構(gòu)成的天線控制系統(tǒng)中,天線控制器和本地控制組件各分配一個(gè)固定的CAN網(wǎng)絡(luò)地址,天線控制器通過(guò)面板選擇所要控制的天線編號(hào),將該天線的工作方式(扇掃、環(huán)掃、手動(dòng))、工作參數(shù)(扇掃邊界、掃描速度)等發(fā)送到所選天線的本地控制組件,再由本地控制組件根據(jù)天線控制器給出的控制算法,實(shí)現(xiàn)對(duì)天線的控制,并將天線的當(dāng)前參數(shù)(方位、轉(zhuǎn)速、轉(zhuǎn)向)通過(guò)CAN總線傳送到天線控制器上顯示。手動(dòng)方式時(shí),所選天線的本地控制組件根據(jù)天線控制器手輪的控制信息和跟隨算法,實(shí)現(xiàn)對(duì)天線的手動(dòng)位置控制。
2 方位傳感器的數(shù)字化設(shè)計(jì)
傳感器是一種物理裝置或生物器官,能夠探測(cè)、感受外界的信號(hào)、物理?xiàng)l件(如光、熱、濕度)或化學(xué)組成(如煙霧),并將探知的信息傳遞給其他裝置或器官。傳感器是一種檢測(cè)裝置,能感受到被測(cè)量的信息,并能將檢測(cè)感受到的信息,按一定規(guī)律變換成為電信號(hào)或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲(chǔ)、顯示、記錄和控制等要求。它是實(shí)現(xiàn)自動(dòng)檢測(cè)和自動(dòng)控制的首要環(huán)節(jié)。
在對(duì)天線位置信息的采集中,方位傳感器采用同步機(jī)電路實(shí)現(xiàn)。其中,定子線圈加入工頻激磁電壓,轉(zhuǎn)子的三相電壓幅度受定子與轉(zhuǎn)子相對(duì)角度的調(diào)制,三個(gè)轉(zhuǎn)子線圈之間相互間隔120°放置。在模擬信號(hào)傳輸中,同步接收機(jī)會(huì)根據(jù)三相電壓幅度的變化跟隨同步機(jī)做同步旋轉(zhuǎn),達(dá)到傳輸角度信號(hào)之目的。為了便于與微處理器的連接,輸出的方位信號(hào)還必須做數(shù)字化處理。
設(shè)同步機(jī)定子加激磁電壓Vo=Vmsinωt,三個(gè)轉(zhuǎn)子線圈的電壓方程為:
式中:K為轉(zhuǎn)子繞組與定子繞組的變壓比;θ為轉(zhuǎn)子相對(duì)于定子的轉(zhuǎn)角;ω為工頻激磁電壓的角頻率。
由此可知,在激磁電壓正峰值時(shí),對(duì)三個(gè)電壓取值,則V1,V2,V3與轉(zhuǎn)角θ的關(guān)系為:
將轉(zhuǎn)角θ從0~360°劃分為12個(gè)區(qū)間,每個(gè)區(qū)間30°,則可將同步機(jī)三相電壓幅度隨轉(zhuǎn)子角度變化的曲線繪制如圖2所示。
如果用V1-V2,V2-V3,V3-V1以及V1,V2,V3中絕對(duì)值最小的信號(hào)Vx的極性來(lái)表示這12個(gè)區(qū)間,則很容易得到各區(qū)間的二進(jìn)制代碼,如表1所示。例如:當(dāng)θ角在0~30°時(shí),V1-V2為正,V2-V3為負(fù),V3-V1為正,而此時(shí)V1的絕對(duì)值最小,即Vx=V1,其值為正,則該區(qū)間可以用(10 11)B表示。
進(jìn)一步,對(duì)此時(shí)的Vx信號(hào)做歸一化處理后再進(jìn)行反正弦運(yùn)算,其結(jié)果是單調(diào)的,且計(jì)算出的角度值α介于0~30°之間。根據(jù)θ角所在的區(qū)間,就可求出當(dāng)前天線的方位。
根據(jù)以上分析,可以將方位信號(hào)數(shù)字化過(guò)程簡(jiǎn)述如下:在激磁工頻信號(hào)的正峰值點(diǎn)生成采樣脈沖信號(hào)CP0和微處理器中斷信號(hào)CP1,控制三路采樣保持電路同時(shí)對(duì)分壓后的同步機(jī)三相電壓進(jìn)行采樣保持,選擇絕對(duì)值最小的一路信號(hào)送A/D轉(zhuǎn)換器,同時(shí)判斷其正負(fù);區(qū)間代碼生成電路根據(jù)對(duì)三路采樣信號(hào)的比較和最小信號(hào)的正負(fù),確定θ角所處區(qū)間的代碼;微處理器響應(yīng)中斷,啟動(dòng)A/D轉(zhuǎn)換,求得α值,同時(shí)讀取θ角所處區(qū)間代碼,根據(jù)表1給出的區(qū)間計(jì)算公式,確定θ角的具體數(shù)值送本地面板顯示,并通過(guò)CAN總線上傳天線控制器。
方位數(shù)字化電路原理框圖如圖3所示。
從圖2可以看出,在0~30°區(qū)間內(nèi)正弦曲線可近似為線性區(qū)間,為進(jìn)一步提高精度,可以按照正弦函數(shù)曲線對(duì)A/D轉(zhuǎn)換進(jìn)行補(bǔ)償,以滿足精確測(cè)量的需要。同時(shí),為避免因激磁電壓的波動(dòng)引起A/D轉(zhuǎn)換后的數(shù)值在區(qū)間之間的跳動(dòng),A/D轉(zhuǎn)換器的參考電壓應(yīng)與激磁電壓的幅度按比例浮動(dòng)。
3 位置隨動(dòng)旋轉(zhuǎn)編碼器接口設(shè)計(jì)
旋轉(zhuǎn)編碼器是隨動(dòng)控制中常用的接口部件,這里選用增量式旋轉(zhuǎn)編碼器,它由涂有莫爾條紋的編碼盤和光電檢測(cè)裝置構(gòu)成,編碼盤上涂有兩道相差90°的黑白相間隔柵,分別稱之為A道和B道。工作時(shí),光電檢測(cè)器發(fā)出可見光照射在編碼盤上,當(dāng)編碼盤旋轉(zhuǎn)時(shí),光發(fā)射管裝置照過(guò)隔柵,光敏接收管便會(huì)產(chǎn)生通(斷)的脈沖輸出信號(hào)。由于A,B道相位差為90°,因此其輸出脈沖也有90°的相差。當(dāng)旋轉(zhuǎn)編碼器正轉(zhuǎn)時(shí),A信號(hào)超前B信號(hào)90°;反轉(zhuǎn)時(shí),B信號(hào)超前A信號(hào)90°。
如果直接采樣A、B兩路信號(hào),電路結(jié)構(gòu)會(huì)比較復(fù)雜。為便于計(jì)算機(jī)處理,可將旋轉(zhuǎn)編碼器的A、B兩路信號(hào)進(jìn)行適當(dāng)變換,生成方向信號(hào)DIR和增量計(jì)數(shù)脈沖CLK.圖4給出了旋轉(zhuǎn)編碼器的接口電路以及相應(yīng)的波形。為防止因機(jī)械轉(zhuǎn)動(dòng)帶來(lái)的波形邊緣的抖動(dòng),接口電路的輸入應(yīng)采用施密特型。
圖4中C點(diǎn)的方波周期是A或B信號(hào)周期的1/2.為了在手輪低速轉(zhuǎn)動(dòng)時(shí),防止由于A或B信號(hào)周期過(guò)大而影響計(jì)數(shù)器的正常工作,可將C點(diǎn)波形與經(jīng)緩存器延遲后的波形E相異或,從而得到增量計(jì)數(shù)脈沖CLK,其周期應(yīng)是C周期的1/2,即為A或B信號(hào)周期的1/4,實(shí)現(xiàn)A或B信號(hào)頻率的四倍頻細(xì)分。為便于計(jì)算機(jī)識(shí)別手輪的轉(zhuǎn)動(dòng)方向,電路中增加了方向信號(hào)DIR,當(dāng)旋轉(zhuǎn)編碼器正向轉(zhuǎn)動(dòng)時(shí),A信號(hào)超前B信號(hào)90°,此時(shí)DIR輸出為高電平;反之,DIR輸出為低電平。
4 天線的PID控制
當(dāng)今的自動(dòng)控制技術(shù)都是基于反饋的概念。反饋理論的要素包括三個(gè)部分:測(cè)量、比較和執(zhí)行。測(cè)量關(guān)心的變量,與期望值相比較,用這個(gè)誤差糾正調(diào)節(jié)控制系統(tǒng)的響應(yīng)。PID(比例-積分-微分)控制器作為最早實(shí)用化的控制器已有70多年歷史,現(xiàn)在仍然是應(yīng)用最廣泛的工業(yè)控制器。PID控制器簡(jiǎn)單易懂,使用中不需精確的系統(tǒng)模型等先決條件,因而成為應(yīng)用最為廣泛的控制器。
圖5給出了天線的PID控制原理。如圖5(a)所示,在連續(xù)控制系統(tǒng)中,PID的控制規(guī)律可以寫成如下形式:
式中:u(t)為PID控制器的輸出或稱為被控對(duì)象的控制輸入;ε(t)為偏差;Kp為比例系數(shù);TI為積分時(shí)間常數(shù);TD為微分時(shí)間常數(shù)。
為在數(shù)字系統(tǒng)中實(shí)現(xiàn)PID控制,需將連續(xù)PID控制規(guī)律離散成離散型PID控制規(guī)律,即用差分方程來(lái)表示:
天線的離散型PID控制方案如圖5(b)所示。在該方案中,天線的工作方式分為自動(dòng)掃描和手動(dòng)掃描兩種。自動(dòng)掃描方式下,天線控制器選擇設(shè)定相應(yīng)天線的掃描轉(zhuǎn)速。由于不同波段的天線尺寸不同,各個(gè)天線轉(zhuǎn)臺(tái)的轉(zhuǎn)動(dòng)慣量也不盡相同,因此需要通過(guò)調(diào)整相應(yīng)天線的比例積分和微分常數(shù),來(lái)使天線的控制達(dá)到期望的特性。而在手動(dòng)掃描時(shí),天線控制器將手輪的轉(zhuǎn)動(dòng)控制,經(jīng)位置隨動(dòng)旋轉(zhuǎn)編碼器變換為對(duì)天線的控制輸出,通過(guò)CAN總線實(shí)時(shí)傳遞給指定天線的本地控制組件,由本地控制組件中的PID控制算法實(shí)現(xiàn)對(duì)天線的手動(dòng)控制,從而達(dá)到手動(dòng)跟蹤目標(biāo)之目的。
5 結(jié)語(yǔ)
CAN總線技術(shù)已在工業(yè)控制中得到廣泛應(yīng)用。本系統(tǒng)采用CAN總線,結(jié)合天線方位的數(shù)字化接口設(shè)計(jì),將分布式微處理器聯(lián)系起來(lái),實(shí)現(xiàn)了多天線的數(shù)字化PID控制,簡(jiǎn)化了天線控制系統(tǒng)的設(shè)計(jì),保證了天線控制的精度與穩(wěn)定性。
-
控制器
+關(guān)注
關(guān)注
114文章
17100瀏覽量
184223 -
控制系統(tǒng)
+關(guān)注
關(guān)注
41文章
6780瀏覽量
112156 -
CAN總線
+關(guān)注
關(guān)注
145文章
1986瀏覽量
132828
發(fā)布評(píng)論請(qǐng)先 登錄
基于CAN總線的閥門智能控制網(wǎng)絡(luò)系統(tǒng)
基于51單片機(jī)的直流電機(jī)數(shù)字化PID控制器設(shè)計(jì)并用MATLAB仿真
采用PIC18F458實(shí)現(xiàn)CAN總線接口設(shè)計(jì)
多天線多載波的數(shù)字上下變頻的FPGA實(shí)現(xiàn)方法有哪些?
數(shù)字化改變生活,數(shù)字化具有什么意義?
數(shù)字化監(jiān)控系統(tǒng)的特點(diǎn)及功能
如何采用PXI總線接口實(shí)現(xiàn)高速數(shù)字化儀模塊的設(shè)計(jì)?
從數(shù)字化實(shí)現(xiàn)的角度理解PI環(huán)節(jié)
數(shù)字化舞臺(tái)布光燈具控制器的設(shè)計(jì)

基于CAN總線的家庭控制器的設(shè)計(jì)與實(shí)現(xiàn)

基于FF現(xiàn)場(chǎng)總線的PID控制應(yīng)用實(shí)現(xiàn)

多天線多載波的數(shù)字上下變頻的FPGA實(shí)現(xiàn)

如何使用FPGA和CAN控制器MCP2515實(shí)現(xiàn)慣導(dǎo)系統(tǒng)的CAN總線接口的設(shè)計(jì)

評(píng)論