99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于Featuretools Python庫來實(shí)現(xiàn)特征工程自動化的實(shí)例

電子工程師 ? 來源:未知 ? 作者:李倩 ? 2018-08-20 09:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

【導(dǎo)讀】如今機(jī)器學(xué)習(xí)正在從人工設(shè)計(jì)模型更多地轉(zhuǎn)移到自動優(yōu)化工作流中,如 H20、TPOT 和 auto-sklearn 等工具已被廣泛使用。這些庫以及隨機(jī)搜索等方法都致力于尋找最適合數(shù)據(jù)集的模型,以此簡化模型篩選與調(diào)優(yōu)過程,而不需要任何人工干預(yù)。然而,特征工程作為機(jī)器學(xué)習(xí)過程中最有價值的一個環(huán)節(jié),卻幾乎一直由人工來完成。

在本文中,我們通過引用一個數(shù)據(jù)集作為例子來給大家介紹基礎(chǔ)知識,并給大家介紹一個基于 Featuretools Python 庫來實(shí)現(xiàn)特征工程自動化的實(shí)例。

前言

特征工程也可以稱作特征構(gòu)造,是基于現(xiàn)有數(shù)據(jù)構(gòu)造新特征來訓(xùn)練機(jī)器學(xué)習(xí)模型的過程??梢哉f這個環(huán)節(jié)比我們具體使用什么模型更重要,因?yàn)闄C(jī)器學(xué)習(xí)算法只會基于我們提供給它的數(shù)據(jù)進(jìn)行學(xué)習(xí),所以構(gòu)造與目標(biāo)任務(wù)相關(guān)的特征是極其重要的(詳見論文「A Few Useful Things to Know about Machine Learning」)。

論文鏈接:

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

一般來說,特征工程是一個漫長的人工過程,依賴于領(lǐng)域知識、直覺及數(shù)據(jù)操作。這一過程是極其單調(diào)的,而且最終的特征結(jié)果會受人的主觀性和時間所限制。自動特征工程旨在幫助數(shù)據(jù)科學(xué)家基于數(shù)據(jù)集自動地構(gòu)造候選特征,并從中挑選出最適合于訓(xùn)練的特征。

特征工程基礎(chǔ)知識

特征工程意味著基于現(xiàn)有數(shù)據(jù)構(gòu)造額外的特征,這些待分析的數(shù)據(jù)往往分布在多張相關(guān)聯(lián)的表中。特征工程需要從數(shù)據(jù)中提取信息,然后將其整合成一張單獨(dú)的表用來訓(xùn)練機(jī)器學(xué)習(xí)模型。

特征構(gòu)造是一個非常耗時的過程,因?yàn)槊總€新特征都需要經(jīng)過幾個步驟去構(gòu)造,特別是那些需要用到多張表信息的特征。我們可以把這些特征構(gòu)造的操作合起來,分成兩個類:“轉(zhuǎn)換(transformation)”和“聚合(aggregation)”。下面我們通過幾個例子來理解一下這些概念。

“轉(zhuǎn)換”適用于單張表格,這個環(huán)節(jié)基于一個或多個現(xiàn)有數(shù)據(jù)列構(gòu)造新的特征。例如,現(xiàn)在我們有下面這張客戶數(shù)據(jù)表:

我們可以通過查找 joined 列的月份或?qū)?income 列取自然對數(shù)來構(gòu)造新特征。這些都屬于“轉(zhuǎn)換”操作,因?yàn)樗鼈兌贾挥昧藖碜砸粡埍淼男畔ⅰ?/p>

另一方面,“聚合”是需要進(jìn)行跨表操作的,并且要基于一對多的關(guān)系來把觀測值分組,然后進(jìn)行數(shù)據(jù)統(tǒng)計(jì)。例如,如果我們有另一張關(guān)于客戶貸款信息的表格,其中每位客戶可能有多筆貸款,那么我們就可以計(jì)算每位客戶貸款額的平均值、最大值和最小值等統(tǒng)計(jì)量了。

這一過程包括根據(jù)不同用戶對貸款數(shù)據(jù)表進(jìn)行分組,計(jì)算聚合后的統(tǒng)計(jì)量,然后把結(jié)果整合到客戶數(shù)據(jù)中。以下是我們在 Python 中用 Pandas 執(zhí)行此過程的代碼:

importpandasaspd#Grouploansbyclientidandcalculatemean,max,minofloansstats=loans.groupby('client_id')['loan_amount'].agg(['mean','max','min'])stats.columns=['mean_loan_amount','max_loan_amount','min_loan_amount']#Mergewiththeclientsdataframestats=clients.merge(stats,left_on='client_id',right_index=True,how='left')stats.head(10)

這些操作本身并不難,但如果我們有上百個變量,它們分布在幾十張表中,若要手動完成這一過程就比較困難了。理想情況下,我們想找到一個解決方案,可以自動執(zhí)行多個表的轉(zhuǎn)換和聚合,并將結(jié)果數(shù)據(jù)整合到一張表中。雖然 Pandas 是非常棒的資源,但需要我們手動完成的數(shù)據(jù)操作工作量仍非常巨大!

▌特征工具(Featuretools)

幸運(yùn)的是,特征工具正是我們在找的解決方案。這個開源的 Python 庫可以基于一組相關(guān)的表自動創(chuàng)建特征。特征工具以“深度特征合成(Deep Feature Synthesis,簡稱 DFS)”為基礎(chǔ),這個方法聽起來比它本身要高級很多(之所以叫“深度特征合成”,不是因?yàn)槭褂昧?a href="http://www.socialnewsupdate.com/v/tag/448/" target="_blank">深度學(xué)習(xí),而是疊加了多重特征)。

深度特征合成疊加了多重轉(zhuǎn)換和聚合操作,這在特征工具詞庫中被稱作特征基元 (feature primitives),用于通過多張表的數(shù)據(jù)來構(gòu)造特征。和機(jī)器學(xué)習(xí)中的大多數(shù)方法一樣,這是一個以簡單概念為基礎(chǔ)的復(fù)雜方法。通過每次學(xué)習(xí)一個構(gòu)造塊,我們就可以很好地理解這個強(qiáng)大的方法。

首先,我們來看一下例子中的數(shù)據(jù)。我們已經(jīng)看到上面提到的部分?jǐn)?shù)據(jù)集,全部的表如下所示:

clients:關(guān)于一家信用社客戶的基本信息。每位客戶只對應(yīng)表中的一行數(shù)據(jù)。

loans:客戶名下的貸款。每筆貸款只對應(yīng)表中的一行數(shù)據(jù),但每位客戶名下可能有多筆貸款。

payments:還貸金額。每筆支付只對應(yīng)一行數(shù)據(jù),但每項(xiàng)貸款可能分多次支付。

如果我們有一個機(jī)器學(xué)習(xí)任務(wù),比如預(yù)測某位客戶是否會還清未來的一筆貸款,我們需要把有關(guān)客戶的所有信息都整合到一張表中。這些表通過變量 client_id 和 loan_id 相互關(guān)聯(lián),我們可以用一系列轉(zhuǎn)換和聚合來手動完成這一過程。然而我們很快就會發(fā)現(xiàn),我們可以使用特征工具來將這個過程自動化。

▌實(shí)體與實(shí)體集

首先要介紹特征工具的兩個概念:實(shí)體 (entity) 和實(shí)體集 (entityset)。簡單來說,一個實(shí)體就是一張表(即 Pandas 中的一個 DataFrame)。一個實(shí)體集是指多個表的集合以及它們之間的相互關(guān)系。我們可以把實(shí)體集看作一種 Python 的數(shù)據(jù)結(jié)構(gòu),且有其專屬的方法和屬性。

我們可以在特征工具中創(chuàng)建一個空的實(shí)體集,如下所示:

importfeaturetoolsasft#Createnewentitysetes=ft.EntitySet(id='clients')

現(xiàn)在我們要把多個實(shí)體進(jìn)行合并。每個實(shí)體必須帶有一個索引,即所有元素都唯一的數(shù)據(jù)列。也就是說,索引列中的每個值在表中只能出現(xiàn)一次。

clients 數(shù)據(jù)框(dataframe)的索引是 client_id,因?yàn)槊课豢蛻舳贾粚?yīng)表中的一行數(shù)據(jù)。我們可以通過如下語法把一個帶有索引的實(shí)體加入一個實(shí)體集:

#Createanentityfromtheclientdataframe#Thisdataframealreadyhasanindexandatimeindexes=es.entity_from_dataframe(entity_id='clients',dataframe=clients,index='client_id',time_index='joined')

loans 數(shù)據(jù)框也有唯一索引 loan_id,將其加入實(shí)體集的語法和處理 clients 的語法相同。然而,payments 數(shù)據(jù)框中沒有唯一的索引。若我們想把這個實(shí)體加入實(shí)體集,則需要讓 make_index = True,并指定一個索引名。雖然特征工具可以自動推斷實(shí)體中每一列的數(shù)據(jù)類型,但我們也可以通過把數(shù)據(jù)類型字典傳入?yún)?shù) variable_types 來將其覆蓋。

#Createanentityfromthepaymentsdataframe#Thisdoesnotyethaveauniqueindexes=es.entity_from_dataframe(entity_id='payments',dataframe=payments,variable_types={'missed':ft.variable_types.Categorical},make_index=True,index='payment_id',time_index='payment_date')

對于這個數(shù)據(jù)框,雖然 missed 是整數(shù),但并不是數(shù)值變量,因?yàn)樗荒苋蓚€離散值,所以我們讓特征工具將其當(dāng)作一個類別變量處理。將數(shù)據(jù)框全部加入實(shí)體集后,我們看到:

根據(jù)我們指定的修正方案,這些列的類型都被正確識別了。下一步,我們需要指定實(shí)體集中各個表之間的關(guān)聯(lián)。

▌表之間的關(guān)聯(lián)

研究兩表之間關(guān)系的最好方法是與父子關(guān)系進(jìn)行類比。這是一種一對多的關(guān)系:每位父親可能有多個孩子。從表的角度來看,父表中的每一行對應(yīng)一位父親,但子表可能有多行數(shù)據(jù),就像同一位父親的多個孩子。

例如,在我們的數(shù)據(jù)集中,clients 是 loans 的父表。每位客戶只對應(yīng) clients 表中的一行數(shù)據(jù),但可能對應(yīng) loans 表中的多行數(shù)據(jù)。同樣,loans 是 payments 的父表,因?yàn)槊抗P貸款可能包含多筆支付。父表通過共有的變量與子表相連接。當(dāng)執(zhí)行聚合操作時,我們根據(jù)父表的變量對子表進(jìn)行歸類,并計(jì)算每個子表的統(tǒng)計(jì)量。

若要標(biāo)明特征工具中的關(guān)聯(lián),我們只需指定連接兩張表的變量。表 clients 和表 loans 是通過變量 client_id 相關(guān)聯(lián)的,表 loans 和表 payments 通過 loan_id 相關(guān)聯(lián)??赏ㄟ^如下語法創(chuàng)建關(guān)聯(lián)并將其加入實(shí)體集:

#Relationshipbetweenclientsandpreviousloansr_client_previous=ft.Relationship(es['clients']['client_id'],es['loans']['client_id'])#Addtherelationshiptotheentitysetes=es.add_relationship(r_client_previous)#Relationshipbetweenpreviousloansandpreviouspaymentsr_payments=ft.Relationship(es['loans']['loan_id'],es['payments']['loan_id'])#Addtherelationshiptotheentitysetes=es.add_relationship(r_payments)es

該實(shí)體集現(xiàn)在包括三個實(shí)體以及連接這些實(shí)體之間的關(guān)系。加入實(shí)體并標(biāo)明關(guān)聯(lián)后,我們的實(shí)體集就完整了,并做好了構(gòu)造新特征的準(zhǔn)備。

▌特征基元

在正式進(jìn)行深度特征合成之前,我們需要理解特征基元這個概念。我們已經(jīng)知道了特征基元是什么,但也只是了解用什么名字來稱呼它們。下面是我們構(gòu)造新特征時的基本操作:

聚合:基于父表與子表的關(guān)聯(lián)(一對多)完成的系列操作,即根據(jù)父表對子表進(jìn)行分組并計(jì)算其統(tǒng)計(jì)量。例如,根據(jù) client_id 對 loan 表進(jìn)行分組,并找到每位客戶最大的貸款數(shù)額。

轉(zhuǎn)換:對一張表中一列或多列進(jìn)行的操作。例如,計(jì)算一張表中兩列的差值或計(jì)算一列的絕對值。

在特征工具中,我們可以通過單個基元或者疊加多個基元來構(gòu)造新特征。下面是特征工具中一些特征基元的列表(我們也可以自定義基元):

▌特征基元

這些基元可以拿來單獨(dú)使用或者結(jié)合起來構(gòu)造新的特征。根據(jù)特定的基元,我們可以使用 ft.dfs 函數(shù)(即深度特征合成)來構(gòu)造特征。我們將所選的 trans_primitives(轉(zhuǎn)換)和 agg_primitives(聚合)傳入 entityset(實(shí)體集)和 target_entity(目標(biāo)實(shí)體),即我們想要添加特征的表:

#Createnewfeaturesusingspecifiedprimitivesfeatures,feature_names=ft.dfs(entityset=es,target_entity='clients',agg_primitives=['mean','max','percent_true','last'],trans_primitives=['years','month','subtract','divide'])

得到的結(jié)果是一個含有新特征的客戶數(shù)據(jù)框(因?yàn)槲覀儼延脩舢?dāng)作了 target_entity)。例如,若我們知道每位用戶加入的月份,這可以作為一個轉(zhuǎn)換特征基元:

我們也有許多聚合基元,如每位客戶的平均支付額:

雖然我們只列舉了一部分特征基元,但實(shí)際上特征工具通過結(jié)合與疊加這些基元構(gòu)造了許多新的特征。

完整的數(shù)據(jù)框包含了793個新特征!

▌深度特征合成

現(xiàn)在我們已經(jīng)做好理解深度特征合成的全部準(zhǔn)備了。實(shí)際上,我們在之前執(zhí)行函數(shù)時已經(jīng)使用過深度特征合成了!深度特征是指通過疊加多個基元得到的特征,深度特征合成是指構(gòu)造這些特征的過程。一個深度特征的深度是為構(gòu)造這個特征所使用的基元數(shù)目。

例如,MEAN(payments.payment_amount)列是一個深度為 1 的深度特征,因?yàn)樗跇?gòu)造過程中只使用了一個聚合基元。LAST(loans(MEAN(payments.payment_amount)) 是一個深度為 2 的特征,它由兩個聚合基元疊加構(gòu)成:將 LAST 疊加在了 MEAN 上。這個特征代表客戶最近一筆支付額的平均值。

我們可以疊加特征到任何想達(dá)到的深度,但事實(shí)上,我從來沒有用過深度超過 2 的特征。關(guān)于這一點(diǎn)很難解釋清楚,但我鼓勵感興趣的人嘗試更進(jìn)一步的探索。

我們無需手動指定特征基元,特征工具可以幫助我們自動選擇特征。為此,我們同樣使用 ft.dfs 函數(shù)來調(diào)用但無需傳入任何特征基元:

#Performdeepfeaturesynthesiswithoutspecifyingprimitivesfeatures,feature_names=ft.dfs(entityset=es,target_entity='clients',max_depth=2)features.head()

特征工具構(gòu)造了許多供我們使用的新特征。雖然這一過程可以自動構(gòu)造新特征,但它不會取代數(shù)據(jù)科學(xué)家的位置,因?yàn)槲覀冞€要清楚如何使用這些特征。例如,如果我們的目標(biāo)是預(yù)測某位客戶是否會償還貸款,那么我們要找出與指定結(jié)果相關(guān)度最高的特征。此外,如果我們有領(lǐng)域知識,則可以利用領(lǐng)域知識來選出特定的特征基元,或通過深度特征合成從候選特征中得到種子特征。

▌下一步

自動特征工程解決了一個問題,但也制造了另一個問題:特征過多。雖然在擬合模型前我們很難說哪些特征是重要的,但肯定不是所有特征都與目標(biāo)任務(wù)相關(guān)。而且,特征過多可能會導(dǎo)致模型性能很差,因?yàn)椴荒敲粗匾奶卣鲿绊懙侥切└匾奶卣鳌?/p>

由特征過多導(dǎo)致的問題又被公認(rèn)為“維度的詛咒”。對于模型來說,特征數(shù)量上升了(即數(shù)據(jù)維度增加了),學(xué)習(xí)特征和目標(biāo)之間的映射規(guī)則也會變得更加困難。實(shí)際上,使模型有良好表現(xiàn)所需的數(shù)據(jù)量與特征數(shù)目呈指數(shù)關(guān)系。

“維度的詛咒”可以通過特征降維(也被稱為特征選擇)來減輕:這是一個剔除不相關(guān)特征的過程。我們可以通過多種途徑實(shí)現(xiàn):主成分分析 (PCA)、SelectKBest、使用模型的特征重要性或使用深度神經(jīng)網(wǎng)絡(luò)來自動編碼。和今天要探討的內(nèi)容相比,特征降維應(yīng)該另起一篇文章來單獨(dú)討論更合適。到現(xiàn)在為止,我們已經(jīng)知道如何使用特征工具,從諸多數(shù)據(jù)表中輕松構(gòu)造大量的特征了!

總結(jié)

同機(jī)器學(xué)習(xí)中的許多主題一樣,基于特征工具的自動特征工程是一個以簡單概念為基礎(chǔ)的復(fù)雜方法?;趯?shí)體集、實(shí)體和關(guān)聯(lián)等概念,特征工具可以通過深度特征合成來構(gòu)造新的特征。深度特征合成將包含了表間一對多關(guān)聯(lián)的“聚合”特征基元依次疊加,“轉(zhuǎn)換”函數(shù)被用于單張表中的一列或多列數(shù)據(jù),以此來從多張表中構(gòu)造新的特征。

在之后的文章中,AI科技大本營也會介紹在實(shí)際應(yīng)用(如 Kaggle 競賽)中如何使用這項(xiàng)技術(shù)。模型的好壞取決于我們?yōu)樗峁┑臄?shù)據(jù),而自動特征工程有助于使特征構(gòu)造過程的效率更高。希望本文介紹的自動特征工程可以幫到大家。

關(guān)于特征工具的更多信息,包括更高級的應(yīng)用方法,可以查看在線文檔。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 自動化
    +關(guān)注

    關(guān)注

    29

    文章

    5785

    瀏覽量

    84931
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134659
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4827

    瀏覽量

    86811

原文標(biāo)題:基于Python的自動特征工程——教你如何自動創(chuàng)建機(jī)器學(xué)習(xí)特征

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    10個殺手級的Python自動化腳本

    今天浩道跟大家分享10個日常工作中用到的python自動化腳本。讓你感受一番python簡單強(qiáng)大之處!
    發(fā)表于 11-28 11:07 ?836次閱讀

    招聘自動化、電氣自動化、自動化控制工程

    招聘自動化、電氣自動化自動化控制工程師,掛證,不坐班,要求持有相關(guān)專業(yè)的中級職稱證,用于我司資質(zhì)申報工作上,湊資質(zhì)人員申報資質(zhì),不存在風(fēng)險。聯(lián)系電話***,Q1580479594李經(jīng)
    發(fā)表于 10-24 18:06

    【上?!揩C頭推薦職位-自動化測試工程師(java/python

    獵頭職位:自動化測試工程師(java/python)工作職責(zé):1.負(fù)責(zé)測試報告輸出、項(xiàng)目風(fēng)險評估,對測試結(jié)果負(fù)責(zé);2.負(fù)責(zé)對產(chǎn)品進(jìn)行接口測試/自動化測試/性能測試/安全測試等工作;3.
    發(fā)表于 06-28 17:37

    python自動化控制設(shè)備 精選資料分享

    python自動化控制設(shè)備,辛辛苦苦讀個大學(xué)或者研究生誰不想每天早九晚五呢?誰不想天天坐辦公室呢?普通本科機(jī)械設(shè)計(jì)制造及其自動化專業(yè),本科期間參加過高數(shù)、數(shù)學(xué)建模、機(jī)器人、數(shù)控、無碳小車等科創(chuàng)比賽
    發(fā)表于 07-19 07:00

    電子設(shè)計(jì)自動化(EDA)是什么

    隨著集成電路技術(shù)的發(fā)展,電子設(shè)計(jì)自動化(EDA)逐漸成為重要的設(shè)計(jì)手段,已經(jīng)廣泛應(yīng)用于模擬與數(shù)字電路系統(tǒng)等許多領(lǐng)域。電子設(shè)計(jì)自動化是一種實(shí)現(xiàn)電子系統(tǒng)或電子產(chǎn)品自動化設(shè)計(jì)的技術(shù),它與電子
    發(fā)表于 07-29 09:24

    Python成為軟件工程師的最愛

    Python語言本身所具有的優(yōu)勢,決定了從事Python學(xué)習(xí)的開發(fā)工程師相較于其他編程語言,擁有更多崗位發(fā)展選擇:◆ Web開發(fā)工程師◆ 人工智能
    發(fā)表于 11-27 10:33

    python控制CANoe實(shí)現(xiàn)自動化測試的方法

    ”完成了python控制CANoe實(shí)現(xiàn)自動化測試。那么,python能控制釘釘么?答案是可以的。那么用py
    發(fā)表于 12-29 08:12

    自動化工程技術(shù)實(shí)例

    本文主要介紹了自動化工程技術(shù)實(shí)例。
    發(fā)表于 06-27 08:00 ?7次下載

    自動化立體結(jié)構(gòu)是如何組成的

    自動化立體的應(yīng)用范圍是非常的廣泛的,很多行業(yè)都會使用到立體,能充分利用空間儲存貨物。那么,給大家介紹一下自動化立體的基本組成結(jié)構(gòu)。
    發(fā)表于 04-24 10:50 ?2170次閱讀

    自動化立體的工作原理

    自動化立體可以說是現(xiàn)代物流倉儲當(dāng)中重要的組成部分,是企業(yè)現(xiàn)代的一種代表,可以實(shí)現(xiàn)存取自動化,操作簡便,那么你知不知道
    發(fā)表于 07-01 09:24 ?2078次閱讀

    分享10個實(shí)用的Python自動化腳本

    重復(fù)性任務(wù)總是耗時且無聊,想一想你想要一張一張地裁剪 100 張照片或 Fetch API、糾正拼寫和語法等工作,所有這些任務(wù)都很耗時,為什么不自動化它們呢?在今天的文章中,我將與你分享 10 個 Python 自動化腳本。
    的頭像 發(fā)表于 01-21 15:58 ?1540次閱讀

    使用Python腳本實(shí)現(xiàn)自動化運(yùn)維任務(wù)

    許多運(yùn)維工程師會使用 Python 腳本來自動化運(yùn)維任務(wù)。Python 是一種流行的編程語言,具有豐富的第三方和強(qiáng)大的
    的頭像 發(fā)表于 04-08 10:36 ?2049次閱讀

    使用Python實(shí)現(xiàn)功能測試自動化

    單的單元測試到復(fù)雜的功能測試的測試。根據(jù)Future Market Insights集團(tuán)發(fā)布的一份報告,到14年底,全球自動化測試市場預(yù)計(jì)將以3.93%的復(fù)合年增長率增長,市場價值將達(dá)到6億美元。
    的頭像 發(fā)表于 05-04 11:20 ?1111次閱讀
    使用<b class='flag-5'>Python</b><b class='flag-5'>實(shí)現(xiàn)</b>功能測試<b class='flag-5'>自動化</b>

    Facebook群組自動化python – 網(wǎng)絡(luò)自動化

    電子發(fā)燒友網(wǎng)站提供《Facebook群組自動化python – 網(wǎng)絡(luò)自動化.zip》資料免費(fèi)下載
    發(fā)表于 07-05 14:26 ?0次下載
    Facebook群組<b class='flag-5'>自動化</b><b class='flag-5'>python</b> – 網(wǎng)絡(luò)<b class='flag-5'>自動化</b>

    Python 模擬鍵盤鼠標(biāo)的方式實(shí)現(xiàn)自動化

    在某些情況下,如果我們需要進(jìn)行自動化操作的應(yīng)用沒有提供相應(yīng)的接口,我們無法直接通過Python調(diào)用API實(shí)現(xiàn)自動化。這種情況下,
    的頭像 發(fā)表于 11-02 14:48 ?1998次閱讀
    <b class='flag-5'>Python</b> 模擬鍵盤鼠標(biāo)的方式<b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>自動化</b>