99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能的主流技術(shù)的發(fā)展大致經(jīng)歷了三個(gè)重要的歷程

工業(yè)4俱樂(lè)部 ? 來(lái)源:未知 ? 作者:李倩 ? 2018-08-01 17:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

摘要:人工智能的主流技術(shù)的發(fā)展大致經(jīng)歷了三個(gè)重要的歷程。

人工智能的主流技術(shù)的發(fā)展大致經(jīng)歷了三個(gè)重要的歷程。1956-1965年,人工智能的形成期,強(qiáng)調(diào)推理的作用。一般認(rèn)為只要機(jī)器被賦予邏輯推理能力就可以實(shí)現(xiàn)人工智能。不過(guò)此后人們發(fā)現(xiàn),只是具備了邏輯推理能力,機(jī)器還遠(yuǎn)遠(yuǎn)達(dá)不到智能化的水平。1965-1990年,人工智能的“知識(shí)期”。這一時(shí)期,人們認(rèn)為要讓機(jī)器變得有智能,就應(yīng)該設(shè)法讓機(jī)器具有知識(shí)。

后來(lái)人們發(fā)現(xiàn),知識(shí)獲取相當(dāng)困難。1990年至今,人工智能進(jìn)入“機(jī)器學(xué)習(xí)期”。隨著各種機(jī)器學(xué)習(xí)算法的提出和應(yīng)用,特別是深度學(xué)習(xí)技術(shù)的發(fā)展,人們希望機(jī)器能夠通過(guò)大量數(shù)據(jù)分析,從而自動(dòng)學(xué)習(xí)出知識(shí)并實(shí)現(xiàn)智能化水平。這一時(shí)期,隨著計(jì)算機(jī)硬件水平的提升,大數(shù)據(jù)分析技術(shù)的發(fā)展,機(jī)器采集、存儲(chǔ)、處理數(shù)據(jù)的水平有了大幅提高。特別是深度學(xué)習(xí)技術(shù)對(duì)知識(shí)的理解比之前淺層學(xué)習(xí)有了很大的進(jìn)步,Alpha Go和中韓圍棋高手過(guò)招大幅領(lǐng)先就是人工智能的高水平代表之一。

人工智能發(fā)展的62年中,有高潮,有低潮,呈現(xiàn)波浪式前進(jìn),螺旋式提升。1960年代,人工智能大發(fā)展,1970年代,人工智能處于低潮,特別是神經(jīng)網(wǎng)路、機(jī)器翻譯等的研究項(xiàng)目大量取消。1980年代,人工智能發(fā)展迎來(lái)了“日本五代機(jī)”大好時(shí)光。但是到1988年,“日本五代機(jī)”研究沒(méi)有達(dá)到預(yù)期的目標(biāo),引起人們反思人工智能的研究。1991年,人工智能頂級(jí)刊物“Artificial Intelligence”第47卷發(fā)表了人工智能基礎(chǔ)專輯,指出了人工智能研究的趨勢(shì)。Kirsh在專輯中提出了人工智能的五個(gè)基本問(wèn)題:

(1)知識(shí)與概念化是否是人工智能的核心?

(2)認(rèn)知能力能否與載體分開(kāi)來(lái)研究?

(3)認(rèn)知的軌跡是否可用類自然語(yǔ)言來(lái)描述?

(4)學(xué)習(xí)能力能否與認(rèn)知分開(kāi)來(lái)研究?

(5)所有的認(rèn)知是否有一種統(tǒng)一的結(jié)構(gòu)?

這些問(wèn)題都是與人工智能有關(guān)的認(rèn)知問(wèn)題,必須從認(rèn)知科學(xué)的基礎(chǔ)理論進(jìn)行探討?;A(chǔ)理論研究是為獲得關(guān)于現(xiàn)象和可觀察事實(shí)的基本原理及新知識(shí)而進(jìn)行的實(shí)驗(yàn)性和理論性工作,它不以任何專門(mén)或特定的應(yīng)用或使用為目的。

在過(guò)去的幾年間,由于神經(jīng)網(wǎng)絡(luò),或者“深度學(xué)習(xí)”方法的飛速發(fā),人工智能已經(jīng)發(fā)生了一場(chǎng)變革,這些人工智能方法的起源都直接來(lái)自神經(jīng)科學(xué)。1943年,心理學(xué)家麥克洛奇(W S McCulloch) 和數(shù)理邏輯學(xué)家皮茲 (W Pitts) 在《數(shù)學(xué)生物物理公報(bào) (Bulletin ofMathematical Biophysics)》上發(fā)表了關(guān)于神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型,提出了MP神經(jīng)網(wǎng)絡(luò)模型,開(kāi)創(chuàng)了人工神經(jīng)網(wǎng)絡(luò)的研究。

神經(jīng)計(jì)算的研究以建設(shè)人工的神經(jīng)網(wǎng)絡(luò)作為開(kāi)端,這些神經(jīng)網(wǎng)絡(luò)能計(jì)算邏輯函數(shù)。不久之后,有人提出了另外的一些機(jī)制,認(rèn)為神經(jīng)網(wǎng)絡(luò)中的神經(jīng)元可能可以逐步地從監(jiān)督式的回饋或者非監(jiān)督方法中有效的編碼環(huán)境統(tǒng)計(jì)下進(jìn)行學(xué)習(xí)。這些機(jī)制打開(kāi)了人工神經(jīng)網(wǎng)絡(luò)研究的另一扇大門(mén),并且提供了當(dāng)代對(duì)深度學(xué)習(xí)進(jìn)行研究的基礎(chǔ)。費(fèi)爾德曼(Feldmann) 和 巴拉德(Ballard) 的連接網(wǎng)絡(luò)模型指出了傳統(tǒng)的人工智能計(jì)算與生物的“計(jì)算"的區(qū)別, 提出了并行分布處理的計(jì)算原則。

1985年,欣頓(Hinton)和塞杰諾斯基(Sejnowsky) 提出了一個(gè)可行的算法,稱為玻耳茲曼(Boltzmann) 機(jī)模型。他們借用了統(tǒng)計(jì)物理學(xué)的概念和方法,首次提出了多層網(wǎng)絡(luò)的學(xué)習(xí)算法。1986年,魯梅爾哈特(Rumelhart) 和 麥克萊倫德(McClelland) 等人提出并行分布處理(Parallel Distributed Processing, 簡(jiǎn)稱PDP) 的理論。一群神經(jīng)科學(xué)和認(rèn)知科學(xué)家意識(shí)到,他們的研究屬于平行分布式處理(PDP)。

當(dāng)時(shí),大多數(shù)的人工智能研究都集中在基于序列計(jì)算建立邏輯處理系統(tǒng),這一概念部分是受到這樣一種思路的啟發(fā)——人類的智能包含了對(duì)符號(hào)表征的處理。但是,在有一些領(lǐng)域,越來(lái)越多的人意識(shí)到,純粹的符號(hào)方法可能過(guò)于脆弱,并且在解決人類習(xí)以為常的現(xiàn)實(shí)問(wèn)題時(shí),可能不夠靈活。取而代之的是,關(guān)于大腦基礎(chǔ)知識(shí)的不斷增加,指出了一個(gè)非常不一樣的方向,強(qiáng)調(diào)動(dòng)態(tài)和高度平行信息處理的重要性?;诖?,PDP興起提出了一個(gè)思路:人類的認(rèn)知和行為來(lái)自動(dòng)態(tài)的、分布式交互,并且基于神經(jīng)網(wǎng)絡(luò)內(nèi)單一類神經(jīng)元的處理單元,通過(guò)學(xué)習(xí)進(jìn)程來(lái)對(duì)交互進(jìn)行調(diào)整,他們通過(guò)調(diào)整參數(shù),以將誤差最小化,將反饋?zhàn)畲蠡?。在各個(gè)地方,神經(jīng)科學(xué)為架構(gòu)和算法的范圍提供了初步指導(dǎo),從而引導(dǎo)人工智能成功應(yīng)用神經(jīng)網(wǎng)絡(luò)。

除了在深度學(xué)習(xí)發(fā)展中的神經(jīng)科學(xué)發(fā)揮重要作用之外,神經(jīng)科學(xué)還推動(dòng)了強(qiáng)化學(xué)習(xí)(RL)的出現(xiàn)。強(qiáng)化學(xué)習(xí)方法解決了如何通過(guò)將環(huán)境中的狀態(tài)映射到行動(dòng)來(lái)最大化未來(lái)獎(jiǎng)勵(lì)的問(wèn)題,并且是人工智能研究中使用最廣泛的工具之一。深度 Q 網(wǎng)絡(luò)(DQN)通過(guò)學(xué)習(xí)將圖像像素的矢量轉(zhuǎn)換為用于選擇動(dòng)作(例如操縱桿移動(dòng))的策略,在 Atari 2600 視頻游戲中展現(xiàn)出專家級(jí)的水平。DQN 的一個(gè)關(guān)鍵因素是“體驗(yàn)重播”(experience replay),其中網(wǎng)絡(luò)以基于實(shí)例的方式存儲(chǔ)訓(xùn)練數(shù)據(jù)的一部分,然后“離線重播”,從過(guò)去新發(fā)現(xiàn)的成功或失敗中學(xué)習(xí)。體驗(yàn)重播對(duì)于最大限度地提高數(shù)據(jù)效率至關(guān)重要,避免了從連續(xù)相關(guān)經(jīng)驗(yàn)中學(xué)習(xí)的不穩(wěn)定的影響,使網(wǎng)絡(luò)即使在復(fù)雜、高度結(jié)構(gòu)化的順序環(huán)境中,也能學(xué)習(xí)可行的價(jià)值函數(shù)。

體驗(yàn)重播直接受理論的啟發(fā),這些理論旨在了解哺乳動(dòng)物大腦中的多個(gè)記憶系統(tǒng)如何相互作用。動(dòng)物的學(xué)習(xí)行為是由海馬和新皮質(zhì)中互補(bǔ)學(xué)習(xí)系統(tǒng)為基礎(chǔ)。DQN 中的重播緩沖區(qū)可以被視為一個(gè)非常原始的海馬,使計(jì)算機(jī)能夠進(jìn)行輔助學(xué)習(xí),就像在生物大腦里發(fā)生的那樣。后續(xù)工作表明,當(dāng)具有高度獎(jiǎng)勵(lì)價(jià)值的事件重播被優(yōu)先考慮時(shí),DQN 中體驗(yàn)重播的好處得到了增長(zhǎng),正如海馬重播似乎更偏好能夠帶來(lái)高水平強(qiáng)化的事件一樣。

存儲(chǔ)在內(nèi)存緩沖區(qū)中的體驗(yàn)不僅可以用于逐漸將深度網(wǎng)絡(luò)的參數(shù)調(diào)整為最佳策略(就像在 DQN 中那樣),還可以根據(jù)個(gè)人經(jīng)驗(yàn)支持快速的行為變化。事實(shí)上,理論神經(jīng)科學(xué)已經(jīng)證明了情景控制的潛在好處,在生物大腦的海馬中,獎(jiǎng)勵(lì)動(dòng)作序列能夠在內(nèi)部從快速可更新的記憶庫(kù)中被重新激活。此外,當(dāng)獲得的環(huán)境經(jīng)驗(yàn)有限時(shí),情景控制特別優(yōu)于其他的學(xué)習(xí)機(jī)制。最近的人工智能 研究已經(jīng)吸取了這些想法來(lái)克服深度強(qiáng)化學(xué)習(xí)網(wǎng)絡(luò)學(xué)習(xí)慢的特性,開(kāi)發(fā)了實(shí)現(xiàn)情景控制的架構(gòu)。這些網(wǎng)絡(luò)存儲(chǔ)特定的體驗(yàn),并且基于當(dāng)前情況輸入和存儲(chǔ)在存儲(chǔ)器中的先前事件之間的相似性來(lái)選擇新的動(dòng)作,考慮與之前的事件相關(guān)聯(lián)的獎(jiǎng)勵(lì)。

智能科學(xué)是由腦科學(xué)、認(rèn)知科學(xué)、人工智能等構(gòu)建的前沿交叉學(xué)科,研究智能的基本理論和實(shí)現(xiàn)技術(shù)。腦科學(xué)從分子水平、細(xì)胞水平、行為水平研究人腦智能機(jī)理,建立腦模型,揭示人腦的本質(zhì)。認(rèn)知科學(xué)是研究人類感知、學(xué)習(xí)、記憶、思維、意識(shí)等人腦心智活動(dòng)過(guò)程的科學(xué)。人工智能研究用人工的方法和技術(shù),模仿、延伸和擴(kuò)展人的智能, 實(shí)現(xiàn)機(jī)器智能。智能科學(xué)是實(shí)現(xiàn)人類水平的人工智能的重要途徑,引領(lǐng)新一代人工智能的發(fā)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49012

    瀏覽量

    249392
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122793

原文標(biāo)題:基礎(chǔ)理論研究是人工智能持續(xù)發(fā)展的保證

文章出處:【微信號(hào):industry4_0club,微信公眾號(hào):工業(yè)4俱樂(lè)部】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門(mén)學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的
    發(fā)表于 07-04 11:10

    智能氮?dú)夤竦?b class='flag-5'>發(fā)展歷程和前景展望

    智能氮?dú)夤竦?b class='flag-5'>發(fā)展歷程大致可以分為早期階段、自動(dòng)化控制時(shí)期和智能化轉(zhuǎn)型三個(gè)階段。1)早期階段:最初
    的頭像 發(fā)表于 06-03 11:01 ?170次閱讀
    <b class='flag-5'>智能</b>氮?dú)夤竦?b class='flag-5'>發(fā)展</b><b class='flag-5'>歷程</b>和前景展望

    人臉識(shí)別技術(shù)人工智能的關(guān)系

    、人工智能的定義與發(fā)展歷程 人工智能,簡(jiǎn)稱AI,是指使計(jì)算機(jī)系統(tǒng)能夠執(zhí)行通常需要人類智能的任務(wù)的技術(shù)
    的頭像 發(fā)表于 02-06 17:32 ?1202次閱讀

    人工智能推理及神經(jīng)處理的未來(lái)

    人工智能行業(yè)所圍繞的是一個(gè)技術(shù)進(jìn)步、社會(huì)需求和監(jiān)管政策影響的動(dòng)態(tài)環(huán)境。機(jī)器學(xué)習(xí)、自然語(yǔ)言處理和計(jì)算機(jī)視覺(jué)方面的技術(shù)進(jìn)步,加速
    的頭像 發(fā)表于 12-23 11:18 ?593次閱讀
    <b class='flag-5'>人工智能</b>推理及神經(jīng)處理的未來(lái)

    微軟AI CEO蘇萊曼談對(duì)于人工智能的未來(lái)發(fā)展

    日前,微軟 AI CEO 穆斯塔法·蘇萊曼在清華大學(xué)的演講中,分享他對(duì)人工智能未來(lái)發(fā)展的深刻洞見(jiàn)。蘇萊曼提出了三個(gè)對(duì)于 AI 的核心觀點(diǎn)——首先,他強(qiáng)調(diào),
    的頭像 發(fā)表于 11-15 13:53 ?653次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    領(lǐng)域,如工業(yè)控制、智能家居、醫(yī)療設(shè)備等。 人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它研究如何使計(jì)算機(jī)具備像人類一樣思考、學(xué)習(xí)、推理和決策的能力。人工智能
    發(fā)表于 11-14 16:39

    LLM技術(shù)對(duì)人工智能發(fā)展的影響

    隨著人工智能技術(shù)的飛速發(fā)展,大型語(yǔ)言模型(LLM)技術(shù)已經(jīng)成為推動(dòng)AI領(lǐng)域進(jìn)步的關(guān)鍵力量。LLM技術(shù)通過(guò)深度學(xué)習(xí)和自然語(yǔ)言處理技術(shù),使得機(jī)器
    的頭像 發(fā)表于 11-08 09:28 ?1849次閱讀

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    不僅提高了能源的生產(chǎn)效率和管理水平,還為未來(lái)的可持續(xù)發(fā)展提供有力保障。隨著技術(shù)的不斷進(jìn)步和應(yīng)用場(chǎng)景的不斷拓展,人工智能將在能源科學(xué)領(lǐng)域發(fā)揮更加重要
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運(yùn)社區(qū)給我一個(gè)閱讀此書(shū)的機(jī)會(huì),感謝平臺(tái)。 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    ,推動(dòng)科學(xué)研究的深入發(fā)展。 總結(jié) 通過(guò)閱讀《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章,我對(duì)AI for Science的技術(shù)支撐有更加全面和深入的理解。我深刻認(rèn)識(shí)到
    發(fā)表于 10-14 09:16

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速器 第一章清晰地闡述人工智能作為科學(xué)研究工具的強(qiáng)大功能。通過(guò)機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等先進(jìn)技術(shù),AI能夠處理和分析海量數(shù)據(jù),發(fā)現(xiàn)傳統(tǒng)方法難以捕捉的模式和規(guī)律。這不
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    的兼容性和可靠性,并為其在人工智能圖像處理領(lǐng)域的應(yīng)用提供更有力的保障。 綜上所述,RISC-V在人工智能圖像處理領(lǐng)域具有廣闊的應(yīng)用前景。其開(kāi)源性、靈活性、低功耗和高性能等特點(diǎn)使得它成為該領(lǐng)域的重要
    發(fā)表于 09-28 11:00

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    、污染治理、碳減排三個(gè)方面介紹人工智能為環(huán)境科學(xué)引入的新價(jià)值和新機(jī)遇。 第8章探討了AI for Science在快速發(fā)展過(guò)程中面臨的機(jī)遇和挑戰(zhàn),并對(duì)“平臺(tái)科研”模式進(jìn)行了展望。
    發(fā)表于 09-09 13:54

    報(bào)名開(kāi)啟!深圳(國(guó)際)通用人工智能大會(huì)將啟幕,國(guó)內(nèi)外大咖齊聚話AI

    呈現(xiàn)、產(chǎn)業(yè)展覽、技術(shù)交流、學(xué)術(shù)論壇于一體的世界級(jí)人工智能合作交流平臺(tái)。本次大會(huì)暨博覽會(huì)由工業(yè)和信息化部政府采購(gòu)中心、廣東省工商聯(lián)、前海合作區(qū)管理局、深圳市工信局等單位指導(dǎo),深圳市人工智能產(chǎn)業(yè)協(xié)會(huì)主辦
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    定制化的硬件設(shè)計(jì),提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA在人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學(xué)習(xí)的加速和云計(jì)算的加速,還可以針對(duì)特定應(yīng)用場(chǎng)景進(jìn)行定制化計(jì)算,為人工智能技術(shù)發(fā)展提供有力支持。
    發(fā)表于 07-29 17:05