99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

自動(dòng)駕駛領(lǐng)域的技術(shù)變革呼之欲出,深度學(xué)習(xí)進(jìn)入“視頻學(xué)習(xí)”時(shí)代

JsPm_robot_1hjq ? 來(lái)源:未知 ? 作者:李倩 ? 2018-04-20 11:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

自動(dòng)駕駛領(lǐng)域的技術(shù)變革呼之欲出。

如果說(shuō),自動(dòng)駕駛大規(guī)模落地的痛點(diǎn)在于深度學(xué)習(xí)的范疇僅限于圖像等靜態(tài)材料,那很快,自動(dòng)駕駛深度學(xué)習(xí)的范圍將擴(kuò)展到視頻領(lǐng)域。

近日,眾安信息技術(shù)服務(wù)有限公司(以下簡(jiǎn)稱“眾安科技”)數(shù)據(jù)科學(xué)實(shí)驗(yàn)室的論文"Dense Dilated Network for Few Shot Action Recognition"(《基于密集擴(kuò)展網(wǎng)絡(luò)的少樣本視頻動(dòng)作識(shí)別》)被ICMR(國(guó)際多媒體圖像分析峰會(huì))錄用,這是深度學(xué)習(xí)在視頻分類領(lǐng)域的創(chuàng)新應(yīng)用,在駕駛行為分析、視頻檢索等領(lǐng)域有重要的業(yè)務(wù)價(jià)值。

深度學(xué)習(xí)進(jìn)入“視頻學(xué)習(xí)”時(shí)代

“讀圖”已經(jīng)無(wú)法滿足機(jī)器的學(xué)習(xí)胃口。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)中一種基于對(duì)數(shù)據(jù)進(jìn)行表面特征的方法,其概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。目前,深度學(xué)習(xí)的主要素材來(lái)源于文字、圖片,而隨著智能手機(jī)等設(shè)備的發(fā)展,視頻沉淀了大量深度學(xué)習(xí)素材。近年來(lái)人工智能、神經(jīng)網(wǎng)絡(luò)的發(fā)展更是促進(jìn)了視頻的分類、識(shí)別的研究。

不過(guò),機(jī)器想要學(xué)習(xí)視頻素材絕非易事。一般來(lái)說(shuō),訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)需要大量標(biāo)記良好的數(shù)據(jù)。對(duì)于機(jī)器來(lái)說(shuō),由于視頻動(dòng)作、視角較多,且視頻每秒都包含了20-30幀畫(huà)面,數(shù)據(jù)規(guī)模較大,機(jī)器的標(biāo)注難度比標(biāo)注圖像復(fù)雜很多倍。另一方面,就視頻本身而言,雖然不同的視頻內(nèi)容差異很大,但同一類的視頻在語(yǔ)義上有著很高的相似性,對(duì)于機(jī)器學(xué)習(xí)來(lái)說(shuō),如何避免“重復(fù)勞動(dòng)”也是擺在現(xiàn)實(shí)面前的一道難題。

針對(duì)上述難題,眾安科技通過(guò)在視頻多樣性中提取高層共有的特性來(lái)實(shí)現(xiàn)機(jī)器學(xué)習(xí)。

眾安科技方面表示,基于機(jī)器學(xué)習(xí)視頻的痛點(diǎn),數(shù)據(jù)科學(xué)實(shí)驗(yàn)室研發(fā)了一種新穎的神經(jīng)網(wǎng)絡(luò)架構(gòu)來(lái)同時(shí)捕獲局部信息和整體時(shí)空信息。具體來(lái)看,眾安科技采用了擴(kuò)張卷積網(wǎng)絡(luò),在這個(gè)網(wǎng)絡(luò)的不同層之間,使用密集連接的方式組合,由此可以融合每一層的輸出,從而學(xué)習(xí)視頻的高級(jí)特征。

和其他網(wǎng)絡(luò)架構(gòu)相比,眾安科技的這款神經(jīng)網(wǎng)絡(luò)架構(gòu)利用每層與之前所有層相連的方式,可以得到從最初局部特征到總體視頻的所有特征信息。而每層網(wǎng)絡(luò)使用了擴(kuò)張卷積(dilated convolution),相比原始的卷積方式,可以更加充分利用時(shí)空信息。因此不需要很深的層數(shù),在少量數(shù)據(jù)下就可以訓(xùn)練效果較好的網(wǎng)絡(luò)。

以目前動(dòng)作類別數(shù)、樣本數(shù)較多的數(shù)據(jù)庫(kù)之一UCF101為例,眾安科技在此數(shù)據(jù)庫(kù)的通用視頻數(shù)據(jù)集上進(jìn)行了大量實(shí)驗(yàn),在僅有20%的訓(xùn)練數(shù)據(jù)時(shí)(模擬對(duì)新任務(wù)的快速學(xué)習(xí)),利用該神經(jīng)網(wǎng)絡(luò)架構(gòu),機(jī)器仍然可以學(xué)到每類視頻的高層語(yǔ)義特征。

視頻深度學(xué)習(xí)下個(gè)落地場(chǎng)景:出行、醫(yī)療

視頻深度學(xué)習(xí)有望率先在出行和醫(yī)療領(lǐng)域落地。

眾安科技研發(fā)的這款神經(jīng)網(wǎng)絡(luò)架構(gòu)在實(shí)戰(zhàn)中也有很高的應(yīng)用價(jià)值,由于該架構(gòu)只需要少量訓(xùn)練數(shù)據(jù)就可以促進(jìn)不同任務(wù)之間的遷移學(xué)習(xí),幫助系統(tǒng)快速上線,從而減少了大量采集數(shù)據(jù)和訓(xùn)練過(guò)程。

如在車險(xiǎn)領(lǐng)域,可以使用該方法對(duì)路口監(jiān)控或行車記錄儀等視頻進(jìn)行快速分析,識(shí)別碰撞和高危駕駛片段,從而對(duì)車主的駕駛行為進(jìn)行建模,實(shí)現(xiàn)車險(xiǎn)的自主定價(jià)。

此外,在醫(yī)療方面,目前人工智能輔助醫(yī)療的手段除了CT圖片等,還有許多造影等多樣的數(shù)據(jù)有待分析。該方法利用時(shí)序信息,可以針對(duì)造影進(jìn)行識(shí)別診斷,尤其是對(duì)于病例較少的罕見(jiàn)病分析更為高效。

眾安科技數(shù)據(jù)科學(xué)實(shí)驗(yàn)室認(rèn)為,該神經(jīng)網(wǎng)絡(luò)架構(gòu)針對(duì)出行和醫(yī)療領(lǐng)域會(huì)有較大的幫助,這也是該團(tuán)隊(duì)未來(lái)產(chǎn)學(xué)研結(jié)合的落地方向之一。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:從圖像識(shí)別走向視頻識(shí)別,眾安科技推出視頻深度學(xué)習(xí)利器

文章出處:【微信號(hào):robot-1hjqr,微信公眾號(hào):1號(hào)機(jī)器人網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卡車、礦車的自動(dòng)駕駛和乘用車的自動(dòng)駕駛技術(shù)要求上有何不同?

    [首發(fā)于智駕最前沿微信公眾號(hào)]自動(dòng)駕駛技術(shù)的發(fā)展,讓組合輔助駕駛得到大量應(yīng)用,但現(xiàn)在對(duì)于自動(dòng)駕駛技術(shù)的宣傳,普遍是在乘用車
    的頭像 發(fā)表于 06-28 11:38 ?193次閱讀
    卡車、礦車的<b class='flag-5'>自動(dòng)駕駛</b>和乘用車的<b class='flag-5'>自動(dòng)駕駛</b>在<b class='flag-5'>技術(shù)</b>要求上有何不同?

    新能源車軟件單元測(cè)試深度解析:自動(dòng)駕駛系統(tǒng)視角

    、道路塌陷)的測(cè)試用例庫(kù),通過(guò)虛擬仿真和真實(shí)路測(cè)數(shù)據(jù)回灌驗(yàn)證算法的魯棒性。 ?第二部分:自動(dòng)駕駛軟件單元測(cè)試技術(shù)體系****? ?測(cè)試對(duì)象分類與測(cè)試策略? ? 數(shù)據(jù)驅(qū)動(dòng)型模塊(如傳感器融合
    發(fā)表于 05-12 15:59

    AI將如何改變自動(dòng)駕駛

    自動(dòng)駕駛帶來(lái)哪些變化?其實(shí)AI可以改變自動(dòng)駕駛技術(shù)的各個(gè)環(huán)節(jié),從感知能力的提升到?jīng)Q策框架的優(yōu)化,從安全性能的增強(qiáng)到測(cè)試驗(yàn)證的加速,AI可以讓自動(dòng)駕駛從實(shí)驗(yàn)室走向大規(guī)模商業(yè)化。 對(duì)于感知
    的頭像 發(fā)表于 05-04 09:58 ?261次閱讀

    自動(dòng)駕駛大模型中常提的Token是個(gè)啥?對(duì)自動(dòng)駕駛有何影響?

    近年來(lái),人工智能技術(shù)迅速發(fā)展,大規(guī)模深度學(xué)習(xí)模型(即大模型)在自然語(yǔ)言處理、計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別以及自動(dòng)駕駛等多個(gè)領(lǐng)域取得了突破性進(jìn)展。
    的頭像 發(fā)表于 03-28 09:16 ?367次閱讀

    FPGA+AI王炸組合如何重塑未來(lái)世界:看看DeepSeek東方神秘力量如何預(yù)測(cè)......

    現(xiàn)出色,例如在機(jī)器學(xué)習(xí)深度學(xué)習(xí)中。 ? 工業(yè)自動(dòng)化:用于實(shí)現(xiàn)復(fù)雜的控制邏輯和實(shí)時(shí)數(shù)據(jù)處理。 ? 視頻處理:在
    發(fā)表于 03-03 11:21

    一文聊聊自動(dòng)駕駛測(cè)試技術(shù)的挑戰(zhàn)與創(chuàng)新

    ,包括場(chǎng)景生成的多樣性與準(zhǔn)確性、多傳感器數(shù)據(jù)融合的精度驗(yàn)證、高效的時(shí)間同步機(jī)制,以及仿真平臺(tái)與實(shí)際場(chǎng)景的匹配等問(wèn)題。 自動(dòng)駕駛測(cè)試的必要性與現(xiàn)狀 1.1 自動(dòng)駕駛技術(shù)的復(fù)雜性推動(dòng)測(cè)試變革
    的頭像 發(fā)表于 12-03 15:56 ?726次閱讀
    一文聊聊<b class='flag-5'>自動(dòng)駕駛</b>測(cè)試<b class='flag-5'>技術(shù)</b>的挑戰(zhàn)與創(chuàng)新

    GPU深度學(xué)習(xí)應(yīng)用案例

    能力,可以顯著提高圖像識(shí)別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識(shí)別、自動(dòng)駕駛領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過(guò)程。 二、自然語(yǔ)言處理 自然語(yǔ)言處理(NLP)是
    的頭像 發(fā)表于 10-27 11:13 ?1339次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無(wú)人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度
    的頭像 發(fā)表于 10-27 10:57 ?1059次閱讀

    人工智能的應(yīng)用領(lǐng)域自動(dòng)駕駛

    的核心技術(shù) 自動(dòng)駕駛汽車的核心依賴于人工智能,尤其是機(jī)器學(xué)習(xí)深度學(xué)習(xí)技術(shù)。這些
    的頭像 發(fā)表于 10-22 16:18 ?1206次閱讀

    淺談自動(dòng)駕駛技術(shù)的現(xiàn)狀及發(fā)展趨勢(shì)

    自動(dòng)駕駛技術(shù),作為人工智能和計(jì)算機(jī)科學(xué)領(lǐng)域的一項(xiàng)重要應(yīng)用,近年來(lái)取得了顯著的發(fā)展與進(jìn)步。它不僅代表著汽車產(chǎn)業(yè)的未來(lái)方向,更預(yù)示著人類出行方式的深刻變革。 一、
    的頭像 發(fā)表于 10-22 14:33 ?3435次閱讀

    Mobileye端到端自動(dòng)駕駛解決方案的深度解析

    強(qiáng)大的技術(shù)優(yōu)勢(shì)。 Mobileye的端到端解決方案概述 1.1 什么是端到端自動(dòng)駕駛? 端到端自動(dòng)駕駛解決方案是一種新型的智能系統(tǒng)架構(gòu),旨在通過(guò)AI學(xué)習(xí)從感知到?jīng)Q策再到操作的全流程。M
    的頭像 發(fā)表于 10-17 09:35 ?832次閱讀
    Mobileye端到端<b class='flag-5'>自動(dòng)駕駛</b>解決方案的<b class='flag-5'>深度</b>解析

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    中的性能和效率。同時(shí),也可能會(huì)出現(xiàn)一些新的基于 FPGA 的深度學(xué)習(xí)算法創(chuàng)新,拓展其應(yīng)用領(lǐng)域。 ? 應(yīng)用領(lǐng)域的拓展:除了在圖像識(shí)別、語(yǔ)音處理、自動(dòng)駕
    發(fā)表于 09-27 20:53

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動(dòng)駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1140次閱讀

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些優(yōu)勢(shì)?

    FPGA(Field-Programmable Gate Array,現(xiàn)場(chǎng)可編程門陣列)在自動(dòng)駕駛領(lǐng)域具有顯著的優(yōu)勢(shì),這些優(yōu)勢(shì)使得FPGA成為自動(dòng)駕駛技術(shù)中不可或缺的一部分。以下是FP
    發(fā)表于 07-29 17:11

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些應(yīng)用?

    控制。在視覺(jué)算法方面,F(xiàn)PGA利用自身并行處理和高速存儲(chǔ)器的特點(diǎn),極大地加快了算法的執(zhí)行速度,提高了運(yùn)算效率。 五、未來(lái)發(fā)展趨勢(shì)隨著自動(dòng)駕駛技術(shù)的不斷發(fā)展,F(xiàn)PGA在自動(dòng)駕駛領(lǐng)域的應(yīng)用
    發(fā)表于 07-29 17:09