99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

硬件的未來(lái)在AI、AI的未來(lái)在材料

ZWxF_iot12345 ? 來(lái)源:未知 ? 作者:鄧佳佳 ? 2018-03-13 09:22 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

前言

由于,人工智能AI)擔(dān)負(fù)工作與目前大多數(shù)計(jì)算機(jī)的運(yùn)算工作有些不同。然而,AI隱含著分析預(yù)測(cè)、推理、直觀的能力與功能。實(shí)時(shí)是最有創(chuàng)意機(jī)器學(xué)習(xí)算法也受到現(xiàn)有機(jī)器硬件能力的束縛。因此,若要在AI方面取得長(zhǎng)足進(jìn)步,我們必須在硬件上進(jìn)行改變,或是半導(dǎo)體材料上進(jìn)行突破。演變從GPU開始,引入模擬設(shè)備(analog devices),然后演變成為具容錯(cuò)性量子計(jì)算機(jī)(fault tolerant quantum computers)。 現(xiàn)在從大規(guī)模分布式深度學(xué)習(xí)算法應(yīng)用于圖形處理器(GPU)開始將高速移動(dòng)的數(shù)據(jù),達(dá)到最終理解圖像和聲音。DDL算法對(duì)視頻音頻數(shù)據(jù)進(jìn)行訓(xùn)練,GPU越多表示學(xué)習(xí)速度越快。

目前,IBM創(chuàng)下紀(jì)錄:隨著更多GPU加入能提升達(dá)到95%效率,就能識(shí)別750萬(wàn)個(gè)圖像達(dá)到33.8%,使用256個(gè)GPU 于64個(gè)Minsky電源系統(tǒng)上。 自2009年以來(lái),隨著GPU模型訓(xùn)練從視頻游戲圖形加速器轉(zhuǎn)向深度學(xué)習(xí),使分布式深度學(xué)習(xí)每年以約2.5倍的速度發(fā)展。所以IBM曾于2017年IEEE國(guó)際電子設(shè)備會(huì)議(2017 IEEE International Electron Devices Meeting)針對(duì)應(yīng)用材料發(fā)表Semiconductor Futurescapes: New Technologies, New Solutions,談到需要開發(fā)哪些技術(shù)才能延續(xù)這種進(jìn)步速度并超越GPU?

如何超越GPU IBM研究公司認(rèn)為,GPU的轉(zhuǎn)變分為三個(gè)階段進(jìn)行:

1、首先將在短期內(nèi)利用GPU和傳統(tǒng)的CMOS構(gòu)建新的加速器以繼續(xù)進(jìn)行;

2、其次將尋找利用低精密度和模擬設(shè)備(analog devices)來(lái)進(jìn)一步降低功率和提高性能的方法;

3、然后進(jìn)入量子計(jì)算時(shí)代,它可是一個(gè)機(jī)會(huì),能提供全新的方法。 在CMOS上的加速器還有很多工作要做,因?yàn)闄C(jī)器學(xué)習(xí)模型可以容忍不精確的計(jì)算。正因?yàn)椤皩W(xué)習(xí)”模型可以借助錯(cuò)誤學(xué)習(xí)而發(fā)揮作用,然而,在銀行交易是無(wú)法容忍有一些許的錯(cuò)誤。預(yù)估,精準(zhǔn)運(yùn)算快速的趨勢(shì),到2022年每年以2.5倍在提高。所以,我們還有五年時(shí)間來(lái)突破模擬設(shè)備(analog devices),將數(shù)據(jù)移入和移出內(nèi)存以降低深度學(xué)習(xí)網(wǎng)絡(luò)的訓(xùn)練時(shí)間。因此,analog devices尋找可以結(jié)合內(nèi)存和運(yùn)算,對(duì)于類神經(jīng)演算的進(jìn)展將是非常重要的。 類神經(jīng)演算如同模擬腦細(xì)胞。神經(jīng)元(neurons) 結(jié)構(gòu)相互連接以低功率訊號(hào)突破von-Neumann的來(lái)回瓶頸(von-Neumann’s back-and-forth bottleneck),使這些訊號(hào)直接在神經(jīng)元之間傳遞,以實(shí)現(xiàn)更高效的計(jì)算。美國(guó)空軍研究實(shí)驗(yàn)室正在測(cè)試IBM TrueNorth神經(jīng)突觸系統(tǒng)的64芯片數(shù)組,專為深度神經(jīng)網(wǎng)絡(luò)推理和挖掘信息而設(shè)計(jì)。該系統(tǒng)使用標(biāo)準(zhǔn)CMOS,但僅消耗10瓦的能量來(lái)驅(qū)動(dòng)其6400萬(wàn)個(gè)神經(jīng)元和160億個(gè)突觸。 但相變化內(nèi)存(phase change memory)是下一代內(nèi)存材料,可能是針對(duì)深度學(xué)習(xí)網(wǎng)絡(luò)優(yōu)化的首款仿真器件。

進(jìn)入量子時(shí)代 (quantum) 據(jù)IBM公司的研究論文,在Nature Quantum Information中展示了機(jī)器學(xué)習(xí)中量子的優(yōu)勢(shì)證明(“Demonstration of quantum advantage in machine learning”),展示了只有五個(gè)超導(dǎo)量子位處理器,量子運(yùn)算能夠穩(wěn)定減少達(dá)100倍運(yùn)算步驟,并且比非量子運(yùn)算更能容忍干擾的信息。 IBM Q的商業(yè)系統(tǒng)現(xiàn)在有20個(gè)量子位,并且原型50個(gè)量子位設(shè)備正在運(yùn)行。它的平均時(shí)間為90μs,也是以前系統(tǒng)的兩倍。但是容錯(cuò)系統(tǒng)在今天的機(jī)器上顯示出明顯的量子優(yōu)勢(shì)。同時(shí),試驗(yàn)新材料(如銅相通的替代品)是關(guān)鍵 - IBM及其合作伙伴在IEDM上推出的其他關(guān)鍵芯片改進(jìn),以推進(jìn)所有運(yùn)算平臺(tái),從von Neumann到類神經(jīng)及量子。 解決處理器到儲(chǔ)存器的連接和帶寬瓶頸,將為AI帶來(lái)新的儲(chǔ)存器架構(gòu),最終可能導(dǎo)致邏輯和儲(chǔ)存器制造過(guò)程技術(shù)之間的融合。IBM的TrueNorth推理芯片就是這種新架構(gòu)的一個(gè)例子,其中每個(gè)神經(jīng)元都可以存取自己的本地儲(chǔ)存器,并且不需要脫機(jī)存取儲(chǔ)存器。 借助訓(xùn)練和推理形式的AI運(yùn)算,必須推向邊緣裝置上(edge devices),例如:手機(jī)、智能手表等。因此,這將興起由計(jì)算設(shè)備組成的網(wǎng)絡(luò)系統(tǒng)。大多數(shù)這樣的邊緣裝置會(huì)受到功率和成本的限制,所以他們的計(jì)算需求可能只能透過(guò)高度優(yōu)化的ASIC來(lái)滿足?,F(xiàn)在,傳統(tǒng)無(wú)晶圓廠半導(dǎo)體公司是否有能力提供這類型的ASIC或是否由AI芯片新創(chuàng)公司例如云端服務(wù)提供商,由誰(shuí)主導(dǎo)目前還為時(shí)過(guò)早。

備注:*馮諾伊曼架構(gòu)(von Neumann bottleneck):是一種將程序指令內(nèi)存和數(shù)據(jù)存儲(chǔ)器合并在一起的計(jì)算機(jī)設(shè)計(jì)概念架構(gòu),因此也隱約指出將儲(chǔ)存裝置與中央處理器分開的概念。在CPU與內(nèi)存之間的流量(數(shù)據(jù)傳輸率)與內(nèi)存的容量相比起來(lái)相當(dāng)小,在現(xiàn)代計(jì)算機(jī)中,流量與CPU的工作效率相比之下非常小。當(dāng)CPU需要在巨大的數(shù)據(jù)上執(zhí)行一些簡(jiǎn)單指令時(shí),數(shù)據(jù)流量就成了整體效率非常嚴(yán)重的限制,CPU將會(huì)在數(shù)據(jù)輸入或輸出內(nèi)存時(shí)閑置。由于CPU速度遠(yuǎn)大于內(nèi)存讀寫速率,因此瓶頸問(wèn)題越來(lái)越嚴(yán)重。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4938

    瀏覽量

    131188
  • 硬件
    +關(guān)注

    關(guān)注

    11

    文章

    3483

    瀏覽量

    67463
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35065

    瀏覽量

    279294

原文標(biāo)題:硬件的未來(lái)在AI、AI的未來(lái)在材料

文章出處:【微信號(hào):iot12345,微信公眾號(hào):物聯(lián)之家網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    最新人工智能硬件培訓(xùn)AI基礎(chǔ)入門學(xué)習(xí)課程參考2025版(離線AI語(yǔ)音視覺(jué)識(shí)別篇)

    端側(cè)離線 AI 智能硬件作為 AI 技術(shù)的重要載體之一,憑借其無(wú)需依賴網(wǎng)絡(luò)即可實(shí)現(xiàn)智能功能的特性,一些網(wǎng)絡(luò)條件受限或?qū)?shù)據(jù)隱私有較高要求的場(chǎng)景中,發(fā)揮著不可或缺的作用。本章基于CSK
    發(fā)表于 07-04 11:14

    Nordic收購(gòu) Neuton.AI 關(guān)于產(chǎn)品技術(shù)的分析

    與 Nordic 的 nRF54 系列超低功耗無(wú)線 SoC 結(jié)合,使得即使是資源極為有限的設(shè)備也能高效運(yùn)行邊緣 AI。Nordic 目前正在將 Neuton 深度集成到自身開發(fā)生態(tài)中,未來(lái)會(huì)提供更多工具、固件
    發(fā)表于 06-28 14:18

    AI技術(shù)助力打造綠色未來(lái)

    AI 能否引領(lǐng)我們走向更可持續(xù)的未來(lái),還是會(huì)加劇全球能源和氣候挑戰(zhàn)?
    的頭像 發(fā)表于 05-19 11:13 ?374次閱讀

    Banana Pi 發(fā)布 BPI-AI2N & BPI-AI2N Carrier,助力 AI 計(jì)算與嵌入式開發(fā)

    RZ/V2N——近期嵌入式世界2025上新發(fā)布,為 AI 計(jì)算、嵌入式系統(tǒng)及工自動(dòng)化提供強(qiáng)大支持。這款全新的計(jì)算平臺(tái)旨在滿足開發(fā)者和企業(yè)用戶對(duì)高性能、低功耗和靈活擴(kuò)展的需求。 []() 領(lǐng)先的計(jì)算
    發(fā)表于 03-19 17:54

    數(shù)據(jù)采集AI行業(yè)的應(yīng)用、優(yōu)勢(shì)及未來(lái)發(fā)展趨勢(shì)

    人工智能(AI)作為21世紀(jì)最具革命性的技術(shù)之一,正在深刻改變各行各業(yè)。AI的核心驅(qū)動(dòng)力是數(shù)據(jù),而數(shù)據(jù)采集則是AI發(fā)展的基石。無(wú)論是機(jī)器學(xué)習(xí)、深度學(xué)習(xí),還是自然語(yǔ)言處理、計(jì)算機(jī)視覺(jué)等領(lǐng)域,高質(zhì)量的數(shù)據(jù)采集都是模型訓(xùn)練和優(yōu)化的關(guān)鍵
    的頭像 發(fā)表于 03-07 14:12 ?650次閱讀
    數(shù)據(jù)采集<b class='flag-5'>在</b><b class='flag-5'>AI</b>行業(yè)的應(yīng)用、優(yōu)勢(shì)及<b class='flag-5'>未來(lái)</b>發(fā)展趨勢(shì)

    友思特新聞 百家齊聚 共赴AI:友思特受邀參與央視總臺(tái)《贏AI+》首屆未來(lái)營(yíng)開營(yíng)

    百家企業(yè)齊聚余杭,共赴AI創(chuàng)新盛宴!央視大型創(chuàng)投節(jié)目《贏AI+》路演全國(guó)100強(qiáng)企業(yè)友思特受邀參與首屆未來(lái)營(yíng)開營(yíng)典禮,以AI創(chuàng)想者的進(jìn)取之
    的頭像 發(fā)表于 03-06 10:41 ?400次閱讀
    友思特新聞 百家齊聚 共赴<b class='flag-5'>AI</b>:友思特受邀參與央視總臺(tái)《贏<b class='flag-5'>在</b><b class='flag-5'>AI</b>+》首屆<b class='flag-5'>未來(lái)</b>營(yíng)開營(yíng)

    FPGA+AI王炸組合如何重塑未來(lái)世界:看看DeepSeek東方神秘力量如何預(yù)測(cè)......

    正以550萬(wàn)美元的"拼多多模式",沖擊萬(wàn)億級(jí)市場(chǎng)格局。 AI時(shí)代,F(xiàn)PGA與AI的結(jié)合正在重塑未來(lái)的芯片生態(tài),主要體現(xiàn)在以下幾個(gè)方面: 1.技術(shù)融合與創(chuàng)新
    發(fā)表于 03-03 11:21

    當(dāng)我問(wèn)DeepSeek AI爆發(fā)時(shí)代的FPGA是否重要?答案是......

    AI時(shí)代,F(xiàn)PGA(現(xiàn)場(chǎng)可編程門陣列)具有極其重要的地位,主要體現(xiàn)在以下幾個(gè)方面: 1.硬件加速與高效能 ? 并行處理能力:FPGA內(nèi)部由大量可編程邏輯單元組成,能夠?qū)崿F(xiàn)高度并行的數(shù)據(jù)處理。這種
    發(fā)表于 02-19 13:55

    AI芯片上的應(yīng)用:革新設(shè)計(jì)與功能

    AI芯片上的應(yīng)用正在深刻改變著芯片設(shè)計(jì)、制造和應(yīng)用的全過(guò)程。未來(lái),隨著AI技術(shù)的不斷進(jìn)步和應(yīng)用場(chǎng)景的不斷拓展,AI芯片將成為推動(dòng)科技發(fā)展的
    的頭像 發(fā)表于 02-17 16:09 ?558次閱讀

    AI云平臺(tái)的未來(lái)趨勢(shì)與發(fā)展方向

    AI云平臺(tái)通過(guò)提供高效的數(shù)據(jù)處理、模型訓(xùn)練、推理服務(wù)以及便捷的開發(fā)工具,極大地降低了企業(yè)應(yīng)用AI的門檻,加速了AI技術(shù)的普及與創(chuàng)新。以下是對(duì)AI云平臺(tái)
    的頭像 發(fā)表于 12-02 17:34 ?881次閱讀

    tlv320Ai32輸出音頻時(shí)總有絲絲聲,為什么?

    tlv320Ai32輸出音頻時(shí)總有絲絲聲,即使輸出的濾波將噪聲調(diào)整到90mV以下還是存在。測(cè)試發(fā)現(xiàn)HPout的噪聲有將近480mV 請(qǐng)問(wèn)這是什么原因,Ai32還有什么寄存器要設(shè)置的? 模擬電源的紋波大概60mV,有影響嗎?
    發(fā)表于 11-05 06:09

    未來(lái)AI大模型的發(fā)展趨勢(shì)

    未來(lái)AI大模型的發(fā)展趨勢(shì)將呈現(xiàn)多元化和深入化的特點(diǎn),以下是對(duì)其發(fā)展趨勢(shì)的分析: 一、技術(shù)驅(qū)動(dòng)與創(chuàng)新 算法與架構(gòu)優(yōu)化 : 隨著Transformer架構(gòu)的廣泛應(yīng)用,AI大模型特征提取和
    的頭像 發(fā)表于 10-23 15:06 ?1929次閱讀

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    。 4. 對(duì)未來(lái)生命科學(xué)發(fā)展的展望 閱讀這一章后,我對(duì)未來(lái)生命科學(xué)的發(fā)展充滿了期待。我相信,人工智能技術(shù)的推動(dòng)下,生命科學(xué)將取得更加顯著的進(jìn)展。例如,
    發(fā)表于 10-14 09:21

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    的物理可信度,還為科學(xué)研究提供了新的視角和方法。 5. 挑戰(zhàn)與未來(lái)展望 第二章也提到了AI for Science面臨的挑戰(zhàn)和未來(lái)展望。盡管AI技術(shù)
    發(fā)表于 10-14 09:16

    嵌入式系統(tǒng)的未來(lái)趨勢(shì)有哪些?

    嵌入式系統(tǒng)是指將我們的操作系統(tǒng)和功能軟件集成于計(jì)算機(jī)硬件系統(tǒng)之中,形成一個(gè)專用的計(jì)算機(jī)系統(tǒng)。那么嵌入式系統(tǒng)的未來(lái)趨勢(shì)有哪些呢? 1. 人工智能與機(jī)器學(xué)習(xí)的整合 隨著現(xiàn)代人工智能(AI)和機(jī)器學(xué)習(xí)
    發(fā)表于 09-12 15:42