99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA TensorRT-LLM Roadmap現(xiàn)已在GitHub上公開發(fā)布

NVIDIA英偉達(dá)企業(yè)解決方案 ? 來源:NVIDIA英偉達(dá)企業(yè)解決方案 ? 2024-11-28 10:43 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

感謝眾多用戶及合作伙伴一直以來對NVIDIA TensorRT-LLM的支持。TensorRT-LLM 的 Roadmap 現(xiàn)已在 GitHub 上公開發(fā)布!

TensorRT-LLM

持續(xù)助力用戶優(yōu)化推理性能

TensorRT-LLM 可在 NVIDIA GPU 上加速和優(yōu)化最新的大語言模型(Large Language Models)的推理性能。該開源程序庫在 /NVIDIA/TensorRT-LLM GitHub 資源庫中免費提供。

近期,我們收到了許多用戶的積極反饋,并表示,TensorRT-LLM 不僅顯著提升了性能表現(xiàn),還成功地將其應(yīng)用集成到各自的業(yè)務(wù)中。TensorRT-LLM 強大的性能和與時俱進(jìn)的新特性,為客戶帶來了更多可能性。

Roadmap 現(xiàn)已公開發(fā)布

過往,許多用戶在將 TensorRT-LLM 集成到自身軟件棧的過程中,總是希望能更好地了解 TensorRT-LLM 的 Roadmap。即日起,NVIDIA 正式對外公開 TensorRT-LLM 的 Roadmap ,旨在幫助用戶更好地規(guī)劃產(chǎn)品開發(fā)方向。

我們非常高興地能與用戶分享,TensorRT-LLM 的 Roadmap 現(xiàn)已在 GitHub 上公開發(fā)布。您可以通過以下鏈接隨時查閱:

https://github.com/NVIDIA/TensorRT-LLM

d88235d6-acaa-11ef-93f3-92fbcf53809c.png

圖 1. NVIDIA/TensorRT-LLM GitHub 網(wǎng)頁截屏

這份 Roadmap 將為您提供關(guān)于未來支持的功能、模型等重要信息,助力您提前部署和開發(fā)。

同時,在 Roadmap 頁面的底部,您可通過反饋鏈接提交問題。無論是問題報告還是新功能建議,我們都期待收到您的寶貴意見。

d8915bb0-acaa-11ef-93f3-92fbcf53809c.png

圖 2.Roadmap 整體框架介紹

利用 TensorRT-LLM

優(yōu)化大語言模型推理

TensorRT-LLM 是一個用于優(yōu)化大語言模型(LLM)推理的庫。它提供最先進(jìn)的優(yōu)化功能,包括自定義 Attention Kernel、Inflight Batching、Paged KV Caching、量化技術(shù)(FP8、INT4 AWQ、INT8 SmoothQuant 等)以及更多功能,以讓你手中的 NVIDIA GPU 能跑出極致推理性能。

TensorRT-LLM 已適配大量的流行模型。通過類似 PyTorch 的 Python API,可以輕松修改和擴展這些模型以滿足自定義需求。以下是已支持的模型列表。

d89b7758-acaa-11ef-93f3-92fbcf53809c.png

我們鼓勵所有用戶定期查閱 TensorRT-LLM Roadmap。這不僅有助于您及時了解 TensorRT-LLM 的最新動態(tài),還能讓您的產(chǎn)品開發(fā)與 NVIDIA 的技術(shù)創(chuàng)新保持同步。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5309

    瀏覽量

    106358
  • GitHub
    +關(guān)注

    關(guān)注

    3

    文章

    483

    瀏覽量

    17677
  • LLM
    LLM
    +關(guān)注

    關(guān)注

    1

    文章

    325

    瀏覽量

    836

原文標(biāo)題:NVIDIA TensorRT-LLM Roadmap 現(xiàn)已在 GitHub 上公開發(fā)布!

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達(dá)企業(yè)解決方案】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NVIDIA RTX AI加速FLUX.1 Kontext現(xiàn)已開放下載

    NVIDIA RTX 與 NVIDIA TensorRT 現(xiàn)已加速 Black Forest Labs 的最新圖像生成和編輯模型;此外,Gemma 3n 現(xiàn)可借助 RTX 和
    的頭像 發(fā)表于 07-16 09:16 ?162次閱讀

    如何在魔搭社區(qū)使用TensorRT-LLM加速優(yōu)化Qwen3系列模型推理部署

    TensorRT-LLM 作為 NVIDIA 專為 LLM 推理部署加速優(yōu)化的開源庫,可幫助開發(fā)者快速利用最新 LLM 完成應(yīng)用原型驗證與產(chǎn)
    的頭像 發(fā)表于 07-04 14:38 ?642次閱讀

    NVIDIA Isaac Sim和Isaac Lab現(xiàn)已推出早期開發(fā)者預(yù)覽版

    NVIDIA 發(fā)布了機器人仿真參考應(yīng)用 Isaac Sim 和機器人學(xué)習(xí)框架 Isaac Lab 的開發(fā)者預(yù)覽版。開發(fā)者現(xiàn)在可以通過 GitHub
    的頭像 發(fā)表于 07-04 14:23 ?399次閱讀

    NVIDIA Blackwell GPU優(yōu)化DeepSeek-R1性能 打破DeepSeek-R1在最小延遲場景中的性能紀(jì)錄

    本文將探討 NVIDIA TensorRT-LLM 如何基于 8 個 NVIDIA Blackwell GPU 的配置,打破 DeepSeek-R1 在最小延遲場景中的性能紀(jì)錄:在 GTC 2025
    的頭像 發(fā)表于 07-02 19:31 ?1744次閱讀
    <b class='flag-5'>NVIDIA</b> Blackwell GPU優(yōu)化DeepSeek-R1性能 打破DeepSeek-R1在最小延遲場景中的性能紀(jì)錄

    使用NVIDIA Triton和TensorRT-LLM部署TTS應(yīng)用的最佳實踐

    針對基于 Diffusion 和 LLM 類別的 TTS 模型,NVIDIA Triton 和 TensorRT-LLM 方案能顯著提升推理速度。在單張 NVIDIA Ada Love
    的頭像 發(fā)表于 06-12 15:37 ?585次閱讀
    使用<b class='flag-5'>NVIDIA</b> Triton和<b class='flag-5'>TensorRT-LLM</b>部署TTS應(yīng)用的最佳實踐

    LM Studio使用NVIDIA技術(shù)加速LLM性能

    隨著 AI 使用場景不斷擴展(從文檔摘要到定制化軟件代理),開發(fā)者和技術(shù)愛好者正在尋求以更 快、更靈活的方式來運行大語言模型(LLM)。
    的頭像 發(fā)表于 06-06 15:14 ?266次閱讀
    LM Studio使用<b class='flag-5'>NVIDIA</b>技術(shù)加速<b class='flag-5'>LLM</b>性能

    使用NVIDIA RTX PRO Blackwell系列GPU加速AI開發(fā)

    NVIDIA GTC 推出新一代專業(yè)級 GPU 和 AI 賦能的開發(fā)者工具—同時,ChatRTX 更新現(xiàn)已支持 NVIDIA NIM,RTX Remix 正式結(jié)束測試階段,本月的
    的頭像 發(fā)表于 03-28 09:59 ?622次閱讀

    無法在OVMS運行來自Meta的大型語言模型 (LLM),為什么?

    無法在 OVMS 運行來自 Meta 的大型語言模型 (LLM),例如 LLaMa2。 從 OVMS GitHub* 存儲庫運行 llama_chat Python* Demo 時遇到錯誤。
    發(fā)表于 03-05 08:07

    京東廣告生成式召回基于 NVIDIA TensorRT-LLM 的推理加速實踐

    、個性化召回、深度召回等),以召回大量候選商品。隨后,系統(tǒng)通過相對簡單的粗排模型對候選集進(jìn)行初步篩選,縮小候選范圍,最后通過精排和重排模型,確定最終返回給用戶的推薦結(jié)果。 隨著大語言模型(LLM)在推薦系統(tǒng)中的應(yīng)用,生成
    的頭像 發(fā)表于 01-14 15:17 ?552次閱讀

    NVIDIA TensorRT-LLM中啟用ReDrafter的一些變化

    Recurrent Drafting (簡稱 ReDrafter) 是蘋果公司為大語言模型 (LLM) 推理開發(fā)并開源的一種新型推測解碼技術(shù),該技術(shù)現(xiàn)在可與 NVIDIA TensorRT-L
    的頭像 發(fā)表于 12-25 17:31 ?750次閱讀
    在<b class='flag-5'>NVIDIA</b> <b class='flag-5'>TensorRT-LLM</b>中啟用ReDrafter的一些變化

    解鎖NVIDIA TensorRT-LLM的卓越性能

    NVIDIA TensorRT-LLM 是一個專為優(yōu)化大語言模型 (LLM) 推理而設(shè)計的庫。它提供了多種先進(jìn)的優(yōu)化技術(shù),包括自定義 Attention Kernel、Inflight
    的頭像 發(fā)表于 12-17 17:47 ?865次閱讀

    TensorRT-LLM低精度推理優(yōu)化

    本文將分享 TensorRT-LLM 中低精度量化內(nèi)容,并從精度和速度角度對比 FP8 與 INT8。首先介紹性能,包括速度和精度。其次,介紹量化工具 NVIDIA TensorRT Model
    的頭像 發(fā)表于 11-19 14:29 ?1249次閱讀
    <b class='flag-5'>TensorRT-LLM</b>低精度推理優(yōu)化

    NVIDIA Nemotron-4 340B模型幫助開發(fā)者生成合成訓(xùn)練數(shù)據(jù)

    Nemotron-4 340B 是針對 NVIDIA NeMo 和 NVIDIA TensorRT-LLM 優(yōu)化的模型系列,該系列包含最先進(jìn)的指導(dǎo)和獎勵模型,以及一個用于生成式 AI 訓(xùn)練的數(shù)據(jù)集。
    的頭像 發(fā)表于 09-06 14:59 ?727次閱讀
    <b class='flag-5'>NVIDIA</b> Nemotron-4 340B模型幫助<b class='flag-5'>開發(fā)</b>者生成合成訓(xùn)練數(shù)據(jù)

    魔搭社區(qū)借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社區(qū)是中國最具影響力的模型開源社區(qū),致力給開發(fā)者提供模型即服務(wù)的體驗。魔搭社區(qū)利用NVIDIA TensorRT-LLM,大大提高了大語言模型的推理性能,方便了模型應(yīng)用部署,提高了大模型產(chǎn)業(yè)應(yīng)用效率,更大規(guī)模地釋放大模型的
    的頭像 發(fā)表于 08-23 15:48 ?1135次閱讀

    Mistral Large 2現(xiàn)已在Amazon Bedrock中正式可用

    北京2024年7月25日 /美通社/ -- 亞馬遜云科技宣布,Mistral AI的Mistral Large 2(24.07)基礎(chǔ)模型(FM)現(xiàn)已在Amazon Bedrock中正式可用
    的頭像 發(fā)表于 07-26 08:07 ?515次閱讀