99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)怎么進(jìn)入人工智能

工業(yè)運(yùn)動(dòng)控制 ? 來(lái)源:電工與電氣控制技術(shù)知識(shí) ? 作者:電工與電氣控制技 ? 2024-04-04 08:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工智能(Artificial Intelligence,AI)是一門(mén)涉及計(jì)算機(jī)、工程、數(shù)學(xué)、哲學(xué)和認(rèn)知科學(xué)等多個(gè)領(lǐng)域的交叉學(xué)科,旨在構(gòu)建智能化計(jì)算機(jī)系統(tǒng),使之能夠自主感知、理解、學(xué)習(xí)和決策。如今,人工智能已成為一個(gè)熱門(mén)領(lǐng)域,涉及到多個(gè)行業(yè)和領(lǐng)域,例如語(yǔ)音識(shí)別、機(jī)器翻譯、圖像識(shí)別等。

編程中進(jìn)行人工智能的關(guān)鍵是使用機(jī)器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來(lái)進(jìn)行預(yù)測(cè)和判斷的算法。下面將介紹使用機(jī)器學(xué)習(xí)算法進(jìn)行人工智能編程的步驟和技術(shù)。

1b36a5f0-f21c-11ee-b759-92fbcf53809c.png

1. 數(shù)據(jù)收集和預(yù)處理

數(shù)據(jù)是進(jìn)行機(jī)器學(xué)習(xí)的關(guān)鍵之一。在進(jìn)行人工智能編程之前,需要從各種數(shù)據(jù)源中收集數(shù)據(jù)。數(shù)據(jù)可以來(lái)自許多來(lái)源,例如互聯(lián)網(wǎng)、社交媒體、傳感器等。一些常見(jiàn)的數(shù)據(jù)類型包括文本、圖片、音頻等。

然而,很多數(shù)據(jù)可能是不完整的、不準(zhǔn)確的、格式不統(tǒng)一的。因此,在進(jìn)行機(jī)器學(xué)習(xí)之前,需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和清理。預(yù)處理步驟通常包括數(shù)據(jù)清洗、去重、歸一化等,以及一些特定的操作,如圖像處理和文本分詞等。

2. 特征提取和選擇

特征是機(jī)器學(xué)習(xí)的另一個(gè)重要組成部分,它們用于描述數(shù)據(jù),從而便于模型進(jìn)行預(yù)測(cè)或分類。特征通常是一個(gè)向量或一個(gè)矩陣。

在進(jìn)行特征提取時(shí),需要將原始數(shù)據(jù)轉(zhuǎn)換為向量或矩陣形式。例如圖像可以表示為一個(gè)像素矩陣,文本可以表示為一個(gè)詞袋模型。特征工程的目的是從原始數(shù)據(jù)中提取有用的特征,在進(jìn)行模型訓(xùn)練和預(yù)測(cè)時(shí)能夠提高準(zhǔn)確性。

特征選擇是指從所有特征中選擇最重要的特征,排除不重要的特征,以提高模型的準(zhǔn)確性。這可以通過(guò)常見(jiàn)的方法,如相關(guān)性分析和主成分分析等來(lái)實(shí)現(xiàn)。

3. 選擇和訓(xùn)練模型

在選擇模型時(shí),需要考慮數(shù)據(jù)的特點(diǎn)、預(yù)測(cè)或分類的目標(biāo)、甚至硬件資源等因素。一些常見(jiàn)的機(jī)器學(xué)習(xí)模型包括決策樹(shù)、支持向量機(jī)(SVM)、神經(jīng)網(wǎng)絡(luò)和隨機(jī)森林等。

訓(xùn)練模型的過(guò)程是指模型根據(jù)輸入數(shù)據(jù)進(jìn)行自我調(diào)整和優(yōu)化的過(guò)程。這個(gè)步驟通常涉及到一些優(yōu)化算法,如梯度下降、遺傳算法等。訓(xùn)練過(guò)程的時(shí)間和效率都與數(shù)據(jù)量、模型復(fù)雜度以及硬件性能等因素有關(guān)。

4. 模型調(diào)整和測(cè)試

模型調(diào)整是指調(diào)整模型參數(shù)以提高訓(xùn)練結(jié)果的過(guò)程。這可以通過(guò)更改模型算法、參數(shù)和訓(xùn)練數(shù)據(jù)的數(shù)量或質(zhì)量等來(lái)實(shí)現(xiàn)。

模型測(cè)試是指通過(guò)測(cè)試集來(lái)測(cè)試模型的準(zhǔn)確性和可靠性,以及檢驗(yàn)?zāi)P偷姆夯芰?。測(cè)試結(jié)果應(yīng)該反映模型在新數(shù)據(jù)上的表現(xiàn)。

總之,在編程中進(jìn)行人工智能需要掌握上述的基本步驟和技術(shù)。此外,還需要對(duì)數(shù)據(jù)理解和預(yù)測(cè)的領(lǐng)域有足夠的知識(shí),例如對(duì)文本分析需要有語(yǔ)言學(xué)的知識(shí)。需要注意的是,機(jī)器學(xué)習(xí)是一個(gè)迭代的過(guò)程,需要反復(fù)測(cè)試、調(diào)整和優(yōu)化模型,以達(dá)到更高的精度和準(zhǔn)確性。

機(jī)器學(xué)習(xí)如何獲得人工智能機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的關(guān)鍵技術(shù)之一。

通過(guò)機(jī)器學(xué)習(xí),計(jì)算機(jī)可以通過(guò)學(xué)習(xí)和分析數(shù)據(jù)來(lái)獲得知識(shí)和經(jīng)驗(yàn),并自動(dòng)進(jìn)行決策和預(yù)測(cè)。

機(jī)器學(xué)習(xí)如何實(shí)現(xiàn)人工智能呢?機(jī)器學(xué)習(xí)是如何進(jìn)行的機(jī)器學(xué)習(xí)是通過(guò)訓(xùn)練模型,讓計(jì)算機(jī)從數(shù)據(jù)中學(xué)習(xí)并提取有用的信息和規(guī)律。

收集并準(zhǔn)備數(shù)據(jù),然后選擇適當(dāng)?shù)臋C(jī)器學(xué)習(xí)算法,如監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)或強(qiáng)化學(xué)習(xí)。

將數(shù)據(jù)輸入到模型中進(jìn)行訓(xùn)練和優(yōu)化,不斷調(diào)整模型的參數(shù)和結(jié)構(gòu),以使其能夠更準(zhǔn)確地進(jìn)行預(yù)測(cè)和決策。

機(jī)器學(xué)習(xí)如何應(yīng)用于人工智能機(jī)器學(xué)習(xí)可以應(yīng)用于各種領(lǐng)域的人工智能應(yīng)用中。

在自然語(yǔ)言處理領(lǐng)域,通過(guò)機(jī)器學(xué)習(xí)可以實(shí)現(xiàn)語(yǔ)音識(shí)別、機(jī)器翻譯和自動(dòng)問(wèn)答等功能。

計(jì)算機(jī)視覺(jué)領(lǐng)域,機(jī)器學(xué)習(xí)可以用于圖像識(shí)別、物體檢測(cè)和人臉識(shí)別等任務(wù)。

機(jī)器學(xué)習(xí)還可以應(yīng)用于智能推薦系統(tǒng)、金融風(fēng)險(xiǎn)預(yù)測(cè)和醫(yī)療診斷等領(lǐng)域。

機(jī)器學(xué)習(xí)中的神經(jīng)網(wǎng)絡(luò)是如何實(shí)現(xiàn)人工智能的神經(jīng)網(wǎng)絡(luò)是一種重要的機(jī)器學(xué)習(xí)算法,模擬人類大腦的神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)。

通過(guò)神經(jīng)網(wǎng)絡(luò),機(jī)器可以進(jìn)行復(fù)雜的模式識(shí)別和決策。

神經(jīng)網(wǎng)絡(luò)的訓(xùn)練是通過(guò)反向傳播算法來(lái)實(shí)現(xiàn)的,即通過(guò)不斷調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,使得網(wǎng)絡(luò)的輸出與期望的輸出盡可能接近。

機(jī)器學(xué)習(xí)的未來(lái)發(fā)展方向是什么機(jī)器學(xué)習(xí)和人工智能仍然處于快速發(fā)展階段,未來(lái)有許多潛在的發(fā)展方向。

其中包括深度學(xué)習(xí)的進(jìn)一步發(fā)展,增強(qiáng)學(xué)習(xí)的應(yīng)用拓展,以及機(jī)器學(xué)習(xí)與其他技術(shù)的結(jié)合,如大數(shù)據(jù)、云計(jì)算物聯(lián)網(wǎng)等。

還需要解決機(jī)器學(xué)習(xí)中的一些挑戰(zhàn),如數(shù)據(jù)隱私和安全性問(wèn)題,以實(shí)現(xiàn)更加可靠和可信的人工智能系統(tǒng)。

通過(guò)機(jī)器學(xué)習(xí),人工智能得以實(shí)現(xiàn)。

機(jī)器學(xué)習(xí)通過(guò)訓(xùn)練模型,讓計(jì)算機(jī)從數(shù)據(jù)中學(xué)習(xí)并提取有用的信息和規(guī)律。

它可以應(yīng)用于各種領(lǐng)域的人工智能應(yīng)用中,并通過(guò)神經(jīng)網(wǎng)絡(luò)等算法來(lái)實(shí)現(xiàn)復(fù)雜的模式識(shí)別和決策。

學(xué)習(xí)基本編程知識(shí):在開(kāi)始使用Python實(shí)現(xiàn)人工智能之前,需要掌握基本的編程知識(shí),例如變量、數(shù)據(jù)類型、條件語(yǔ)句、循環(huán)語(yǔ)句、函數(shù)和對(duì)象等。

了解人工智能概念和算法:學(xué)習(xí)人工智能領(lǐng)域的基本概念和算法,例如機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)、決策樹(shù)和聚類等。

選擇適當(dāng)?shù)膸?kù)和框架:選擇適當(dāng)?shù)腜ython庫(kù)和框架可以加快開(kāi)發(fā)過(guò)程,例如NumPy、Pandas、Matplotlib、Scikit-learn、TensorFlow和PyTorch等。

數(shù)據(jù)預(yù)處理:對(duì)數(shù)據(jù)進(jìn)行清洗、轉(zhuǎn)換、縮放和標(biāo)準(zhǔn)化等預(yù)處理操作,以便用于機(jī)器學(xué)習(xí)算法。

建立模型:使用Python庫(kù)和框架構(gòu)建機(jī)器學(xué)習(xí)模型或深度學(xué)習(xí)模型。

訓(xùn)練模型:使用Python編寫(xiě)代碼,對(duì)模型進(jìn)行訓(xùn)練,并調(diào)整模型參數(shù)以提高模型性能。

測(cè)試模型:測(cè)試模型性能,使用測(cè)試數(shù)據(jù)評(píng)估模型的準(zhǔn)確性、精確性、召回率和F1分?jǐn)?shù)等指標(biāo)。

部署模型:將模型部署到生產(chǎn)環(huán)境中,以便進(jìn)行實(shí)時(shí)預(yù)測(cè)和推理。

總的來(lái)說(shuō),Python是一種非常適合實(shí)現(xiàn)人工智能的編程語(yǔ)言,具有豐富的庫(kù)和框架,可以簡(jiǎn)化開(kāi)發(fā)過(guò)程并提高效率。

圖像分類:使用Python和深度學(xué)習(xí)庫(kù)如TensorFlow和PyTorch,可以構(gòu)建圖像分類模型,用于將圖像分類為不同的類別。

自然語(yǔ)言處理:Python中有許多自然語(yǔ)言處理工具和庫(kù),如NLTK和spaCy。使用這些工具,可以構(gòu)建文本分類器、語(yǔ)言模型和對(duì)話系統(tǒng)等應(yīng)用程序。

機(jī)器學(xué)習(xí):Python是一種非常流行的機(jī)器學(xué)習(xí)編程語(yǔ)言。使用庫(kù)如Scikit-learn和Keras,可以構(gòu)建分類、回歸、聚類和推薦系統(tǒng)等應(yīng)用程序。

數(shù)據(jù)分析:Python也是一種非常流行的數(shù)據(jù)分析語(yǔ)言。使用Pandas和NumPy等庫(kù),可以處理和分析大量數(shù)據(jù)集,構(gòu)建預(yù)測(cè)模型和數(shù)據(jù)可視化應(yīng)用程序。

智能游戲:使用Python和Pygame等庫(kù),可以構(gòu)建智能游戲,如智能象棋、掃雷和五子棋等。

以上是一些使用Python實(shí)現(xiàn)人工智能的示例,但實(shí)際上Python的應(yīng)用領(lǐng)域非常廣泛,可以應(yīng)用于許多其他領(lǐng)域,如計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別、推薦系統(tǒng)、物聯(lián)網(wǎng)等。

數(shù)據(jù)收集和處理:這是任何機(jī)器學(xué)習(xí)項(xiàng)目的第一步,需要獲取和準(zhǔn)備用于訓(xùn)練和測(cè)試模型的數(shù)據(jù)。Python的pandas庫(kù)和numpy庫(kù)提供了強(qiáng)大的數(shù)據(jù)處理功能,可以用來(lái)清洗、轉(zhuǎn)換和分析數(shù)據(jù)集。

特征選擇:特征是指在訓(xùn)練數(shù)據(jù)中用來(lái)預(yù)測(cè)目標(biāo)變量的屬性。特征選擇是選擇最相關(guān)的特征,以獲得更好的預(yù)測(cè)性能。Python的sklearn庫(kù)提供了許多特征選擇算法,包括基于統(tǒng)計(jì)學(xué)的算法和基于機(jī)器學(xué)習(xí)的算法。

模型選擇和訓(xùn)練:選擇一個(gè)適合您的問(wèn)題的機(jī)器學(xué)習(xí)模型,并使用訓(xùn)練數(shù)據(jù)對(duì)其進(jìn)行訓(xùn)練。Python的sklearn庫(kù)包含了大量的機(jī)器學(xué)習(xí)算法,包括決策樹(shù)、隨機(jī)森林、支持向量機(jī)、神經(jīng)網(wǎng)絡(luò)等。

模型評(píng)估:評(píng)估模型的性能是非常重要的。Python的sklearn庫(kù)提供了多種模型評(píng)估指標(biāo),例如準(zhǔn)確率、精確率、召回率、F1分?jǐn)?shù)等等。您可以使用這些指標(biāo)來(lái)比較不同模型之間的性能。

模型調(diào)優(yōu):如果您的模型性能不夠好,可以考慮調(diào)整模型參數(shù)以獲得更好的性能。Python的sklearn庫(kù)提供了許多用于調(diào)整模型參數(shù)的工具,包括網(wǎng)格搜索、隨機(jī)搜索等。

預(yù)測(cè):一旦您擁有一個(gè)訓(xùn)練好的模型,就可以使用它來(lái)進(jìn)行預(yù)測(cè)了。Python的sklearn庫(kù)提供了用于預(yù)測(cè)新數(shù)據(jù)的函數(shù),您可以使用它來(lái)進(jìn)行預(yù)測(cè)并獲取預(yù)測(cè)結(jié)果。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49014

    瀏覽量

    249419
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134601
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門(mén)學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    人工智能機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù)
    的頭像 發(fā)表于 01-25 17:37 ?931次閱讀
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】1.初步理解具身智能

    對(duì)人工智能、機(jī)器人技術(shù)和計(jì)算系統(tǒng)交叉領(lǐng)域感興趣的讀者來(lái)說(shuō)不可或缺的書(shū)。這本書(shū)深入探討了具身智能這一結(jié)合物理機(jī)器人和智能算法的領(lǐng)域,該領(lǐng)域正在
    發(fā)表于 12-28 21:12

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+數(shù)據(jù)在具身人工智能中的價(jià)值

    嵌入式人工智能(EAI)將人工智能集成到機(jī)器人等物理實(shí)體中,使它們能夠感知、學(xué)習(xí)環(huán)境并與之動(dòng)態(tài)交互。這種能力使此類機(jī)器人能夠在人類社會(huì)中有效
    發(fā)表于 12-24 00:33

    如何在低功耗MCU上實(shí)現(xiàn)人工智能機(jī)器學(xué)習(xí)

    人工智能 (AI) 和機(jī)器學(xué)習(xí) (ML) 的技術(shù)不僅正在快速發(fā)展,還逐漸被創(chuàng)新性地應(yīng)用于低功耗的微控制器 (MCU) 中,從而實(shí)現(xiàn)邊緣AI/ML的解決方案。
    的頭像 發(fā)表于 12-17 16:06 ?867次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設(shè)備或機(jī)器中,以實(shí)現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強(qiáng)的適應(yīng)性和靈活性,能夠根據(jù)用戶需求進(jìn)行定制化設(shè)計(jì)。它廣泛應(yīng)用于各種
    發(fā)表于 11-14 16:39

    具身智能機(jī)器學(xué)習(xí)的關(guān)系

    具身智能(Embodied Intelligence)和機(jī)器學(xué)習(xí)(Machine Learning)是人工智能領(lǐng)域的兩個(gè)重要概念,它們之間存在著密切的關(guān)系。 1. 具身
    的頭像 發(fā)表于 10-27 10:33 ?1049次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2978次閱讀
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    、優(yōu)化等方面的應(yīng)用有了更清晰的認(rèn)識(shí)。特別是書(shū)中提到的基于大數(shù)據(jù)和機(jī)器學(xué)習(xí)的能源管理系統(tǒng),通過(guò)實(shí)時(shí)監(jiān)測(cè)和分析能源數(shù)據(jù),實(shí)現(xiàn)了能源的高效利用和智能化管理。 其次,第6章通過(guò)多個(gè)案例展示了人工智能
    發(fā)表于 10-14 09:27

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析復(fù)雜的數(shù)據(jù)集,從而發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和規(guī)
    發(fā)表于 10-14 09:16

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速器 第一章清晰地闡述了人工智能作為科學(xué)研究工具的強(qiáng)大功能。通過(guò)機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等先進(jìn)技術(shù),AI能夠處理和分析海量
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V和Arm內(nèi)核及其定制的機(jī)器學(xué)習(xí)和浮點(diǎn)運(yùn)算單元,用于處理復(fù)雜的人工智能圖像處理任務(wù)。 四、未來(lái)發(fā)展趨勢(shì) 隨著人工智能技術(shù)的不斷發(fā)展和普及,RISC-V在
    發(fā)表于 09-28 11:00

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》 這本書(shū)便將為讀者徐徐展開(kāi)AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    報(bào)名開(kāi)啟!深圳(國(guó)際)通用人工智能大會(huì)將啟幕,國(guó)內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國(guó)際)通用人工智能大會(huì)暨深圳(國(guó)際)通用人工智能產(chǎn)業(yè)博覽會(huì)將在深圳國(guó)際會(huì)展中心(寶安)舉辦。大會(huì)以“魅力AI·無(wú)限未來(lái)”為主題,致力于打造全球通用人工智能領(lǐng)域集產(chǎn)品
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過(guò)程加速:FPGA可以用來(lái)加速深度學(xué)習(xí)的訓(xùn)練和推理過(guò)程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05