99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用語言對(duì)齊多模態(tài)信息,北大騰訊等提出LanguageBind,刷新多個(gè)榜單

深度學(xué)習(xí)自然語言處理 ? 來源:機(jī)器之心 ? 2023-11-23 15:46 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在博士畢業(yè)就有10篇ACL一作的師兄指導(dǎo)下是種什么體驗(yàn)

北京大學(xué)與騰訊等機(jī)構(gòu)的研究者們提出了多模態(tài)對(duì)齊框架 ——LanguageBind。該框架在視頻、音頻、文本、深度圖和熱圖像等五種不同模態(tài)的下游任務(wù)中取得了卓越的性能,刷榜多項(xiàng)評(píng)估榜單,這標(biāo)志著多模態(tài)學(xué)習(xí)領(lǐng)域向著「大一統(tǒng)」理念邁進(jìn)了重要一步。

在現(xiàn)代社會(huì),信息傳遞和交流不再局限于單一模態(tài)。我們生活在一個(gè)多模態(tài)的世界里,聲音、視頻、文字和深度圖等模態(tài)信息相互交織,共同構(gòu)成了我們豐富的感知體驗(yàn)。這種多模態(tài)的信息交互不僅存在于人類社會(huì)的溝通中,同樣也是機(jī)器理解世界所必須面對(duì)的挑戰(zhàn)。

如何讓機(jī)器像人類一樣理解和處理這種多模態(tài)的數(shù)據(jù),成為了人工智能領(lǐng)域研究的前沿問題。

在過去的十年里,隨著互聯(lián)網(wǎng)和智能設(shè)備的普及,視頻內(nèi)容的數(shù)量呈爆炸式增長。視頻平臺(tái)如 YouTube、TikTok 和 Bilibili 等匯聚了億萬用戶上傳和分享的視頻內(nèi)容,涵蓋了娛樂、教育、新聞報(bào)道、個(gè)人日志等各個(gè)方面。如此龐大的視頻數(shù)據(jù)量為人類提供了前所未有的信息和知識(shí)。為了解決這些視頻理解任務(wù),人們采用了視頻 - 語言(VL)預(yù)訓(xùn)練方法,將計(jì)算機(jī)視覺和自然語言處理結(jié)合起來,這些模型能夠捕捉視頻語義并解決下游任務(wù)。

然而,目前的 VL 預(yù)訓(xùn)練方法通常僅適用于視覺和語言模態(tài),而現(xiàn)實(shí)世界中的應(yīng)用場景往往包含更多的模態(tài)信息,如深度圖、熱圖像等。如何整合和分析不同模態(tài)的信息,并且能夠在多個(gè)模態(tài)之間建立準(zhǔn)確的語義對(duì)應(yīng)關(guān)系,成為了多模態(tài)領(lǐng)域的一個(gè)新的挑戰(zhàn)。

為了應(yīng)對(duì)這一難題,北大與騰訊的研究人員提出了一種新穎的多模態(tài)對(duì)齊框架 ——LanguageBind。與以往依賴圖像作為主導(dǎo)模態(tài)的方法不同,LanguageBind 采用語言作為多模態(tài)信息對(duì)齊的紐帶。

d09ea0e0-7ef0-11ee-939d-92fbcf53809c.png

論文地址:https://arxiv.org/pdf/2310.01852.pdf

GitHub 地址:https://github.com/PKU-YuanGroup/LanguageBind

Huggingface 地址:https://huggingface.co/LanguageBind

語言因其內(nèi)在的語義豐富性和表現(xiàn)力,被賦予了整合和引導(dǎo)其他模態(tài)信息對(duì)齊的能力。在這個(gè)框架下,語言不再是附屬于視覺信息的標(biāo)注或說明,而是成為了聯(lián)合視覺、音頻和其他模態(tài)的中心通道。

LanguageBind 通過將所有模態(tài)的信息映射到一個(gè)統(tǒng)一的語言導(dǎo)向的嵌入空間,實(shí)現(xiàn)了不同模態(tài)之間的語義對(duì)齊。這種對(duì)齊方法避免了通過圖像中介可能引入的信息損失,提高了多模態(tài)信息處理的準(zhǔn)確性和效率。更重要的是,這種方法為未來的擴(kuò)展提供了靈活性,允許簡單地添加新的模態(tài),而無需重新設(shè)計(jì)整個(gè)系統(tǒng)。

此外,該研究團(tuán)隊(duì)構(gòu)建了 VIDAL-10M 數(shù)據(jù)集,這是一個(gè)大規(guī)模、包含多模態(tài)數(shù)據(jù)對(duì)的數(shù)據(jù)集。

VIDAL-10M 涵蓋了視頻 - 語言、紅外 - 語言、深度 - 語言和音頻 - 語言配對(duì),以確??缒B(tài)的信息是完整且一致的。通過在該數(shù)據(jù)集上進(jìn)行訓(xùn)練,LanguageBind 在視頻、音頻、深度和紅外等 15 個(gè)廣泛的基準(zhǔn)測試中取得了卓越的性能表現(xiàn)。

d0c06144-7ef0-11ee-939d-92fbcf53809c.png

d0e06b6a-7ef0-11ee-939d-92fbcf53809c.png

方法介紹

在多模態(tài)信息處理領(lǐng)域,主流的對(duì)齊技術(shù),如 ImageBind,主要依賴圖像作為橋梁來實(shí)現(xiàn)不同模態(tài)之間的間接對(duì)齊。這種方法在對(duì)其他模態(tài)和語言模態(tài)的對(duì)齊上可能會(huì)導(dǎo)致性能次優(yōu)化,因?yàn)樗枰獌刹睫D(zhuǎn)換過程 —— 首先是從目標(biāo)模態(tài)到圖像模態(tài),然后是從圖像模態(tài)到語言模態(tài)。這種間接對(duì)齊可能導(dǎo)致語義信息在轉(zhuǎn)換過程中的衰減,從而影響最終的性能表現(xiàn)。

d1075824-7ef0-11ee-939d-92fbcf53809c.png

針對(duì)這一問題,該團(tuán)隊(duì)提出了一種名為 LanguageBind 的多模態(tài)語義對(duì)齊預(yù)訓(xùn)練框架。該框架摒棄了依賴圖像作為中介的傳統(tǒng)模式,而是直接利用語言模態(tài)作為不同模態(tài)之間的紐帶。語言模態(tài)因其天然的語義豐富性,成為連接視覺、音頻、深度等模態(tài)的理想選擇。LanguageBind 框架通過利用對(duì)比學(xué)習(xí)機(jī)制,將不同模態(tài)的數(shù)據(jù)映射到一個(gè)共享的語義嵌入空間中。在這個(gè)空間里,不同模態(tài)的信息可以直接進(jìn)行語義層面的理解與對(duì)齊。

d126bd86-7ef0-11ee-939d-92fbcf53809c.png

LanguageBind 概覽圖

具體而言,LanguageBind 通過錨定語言模態(tài),采用一系列優(yōu)化的對(duì)比學(xué)習(xí)策略,對(duì)多模態(tài)數(shù)據(jù)進(jìn)行預(yù)訓(xùn)練。這一過程中,模型學(xué)習(xí)將來自不同模態(tài)的數(shù)據(jù)編碼到與語言模態(tài)相兼容的表征中,確保了模態(tài)間的語義一致性。這種直接的跨模態(tài)語義對(duì)齊避免了傳統(tǒng)方法中的性能損失,同時(shí)提高了模型在下游多模態(tài)任務(wù)中的泛化能力和適用性。

LanguageBind 框架的另一個(gè)優(yōu)點(diǎn)是其擴(kuò)展性。由于直接使用語言作為核心對(duì)齊模態(tài),當(dāng)引入新的模態(tài)時(shí),無需重構(gòu)整個(gè)對(duì)齊機(jī)制,只需通過相同的對(duì)比學(xué)習(xí)過程,將新模態(tài)的數(shù)據(jù)映射到已經(jīng)建立的語言導(dǎo)向嵌入空間。這使得 LanguageBind 不僅適用于現(xiàn)有的模態(tài),也能輕松適應(yīng)未來可能出現(xiàn)的新模態(tài),為多模態(tài)預(yù)訓(xùn)練技術(shù)的發(fā)展奠定了堅(jiān)實(shí)基礎(chǔ)。

數(shù)據(jù)集介紹

在跨模態(tài)預(yù)訓(xùn)練領(lǐng)域,數(shù)據(jù)集的構(gòu)建及其質(zhì)量對(duì)于預(yù)訓(xùn)練模型的性能與應(yīng)用效能具有決定性影響。傳統(tǒng)的多模態(tài)數(shù)據(jù)集大多局限于二模態(tài)或三模態(tài)的配對(duì)數(shù)據(jù),這種限制導(dǎo)致了對(duì)更豐富模態(tài)對(duì)齊數(shù)據(jù)集的需求。

因而,該團(tuán)隊(duì)開發(fā)了 VIDAL-10M 數(shù)據(jù)集,這是一個(gè)創(chuàng)新的五模態(tài)數(shù)據(jù)集,包含了視頻 - 語言(VL)、紅外 - 語言(IL)、深度 - 語言(DL)、音頻 - 語言(AL)等數(shù)據(jù)對(duì)。每個(gè)數(shù)據(jù)對(duì)都經(jīng)過了精心的質(zhì)量篩選,旨在為跨模態(tài)預(yù)訓(xùn)練領(lǐng)域提供一個(gè)高品質(zhì)、高完整性的訓(xùn)練基礎(chǔ)。

d15ec6e0-7ef0-11ee-939d-92fbcf53809c.png

VIDAL-10M 數(shù)據(jù)集示例

VIDAL-10M 數(shù)據(jù)集的構(gòu)建主要包括三步:

視覺相關(guān)搜索詞庫構(gòu)建。設(shè)計(jì)一種創(chuàng)新的搜索詞獲取策略,該策略綜合利用了各類視覺任務(wù)數(shù)據(jù)集中的文本信息,如標(biāo)簽和標(biāo)題,以構(gòu)建一個(gè)豐富視覺概念且多樣化的視頻數(shù)據(jù)集,從而增強(qiáng)了數(shù)據(jù)多樣性和覆蓋度。

視頻和音頻數(shù)據(jù)的收集、清洗與篩選:在數(shù)據(jù)的收集過程中,該研究采取了基于文本、視覺和音頻內(nèi)容的多種過濾機(jī)制,這些機(jī)制確保收集到的視頻和音頻數(shù)據(jù)與搜索詞高度相關(guān),并且滿足高標(biāo)準(zhǔn)的質(zhì)量要求。這一步驟是確保數(shù)據(jù)集質(zhì)量的關(guān)鍵環(huán)節(jié),它直接影響模型訓(xùn)練的效果和后續(xù)任務(wù)的性能。

紅外、深度模態(tài)數(shù)據(jù)生成與多視角文本增強(qiáng)。此階段,利用多種先進(jìn)的生成模型技術(shù)合成了紅外和深度模態(tài)數(shù)據(jù),并對(duì)文本內(nèi)容進(jìn)行了多角度的生成和增強(qiáng)。多視角文本增強(qiáng)包括了標(biāo)題、標(biāo)簽、關(guān)鍵幀描述、視頻概要等多個(gè)維度,它為視頻內(nèi)容提供了全面且細(xì)致的描述,增強(qiáng)了數(shù)據(jù)的語義豐富性和描述的細(xì)粒度。

d1b74ffe-7ef0-11ee-939d-92fbcf53809c.png

VIDAL-10M 數(shù)據(jù)集的構(gòu)建過程

實(shí)驗(yàn)

LanguageBind 框架被應(yīng)用于多個(gè)模態(tài)的零樣本分類任務(wù),并與其他模型進(jìn)行了性能比較。實(shí)驗(yàn)結(jié)果顯示,LanguageBind 方法在包括視頻、音頻、深度圖像、熱成像等多模態(tài)數(shù)據(jù)上的 15 個(gè)零樣本分類與檢索任務(wù)中均展示了顯著的性能提升。這些實(shí)驗(yàn)成果強(qiáng)調(diào)了 LanguageBind 方法在理解和處理不同模態(tài)數(shù)據(jù)中的潛在能力,尤其是在沒有先前樣本可供學(xué)習(xí)的情況下。為了更深入地了解 LanguageBind 方法的性能,可以參照以下詳細(xì)的實(shí)驗(yàn)結(jié)果。

表 2 顯示,LanguageBind 的性能在 MSR-VTT 上超過 VideoCoca 和 OmniVL ,盡管僅使用 300 萬個(gè)視頻 - 文本對(duì)。

d1ddf640-7ef0-11ee-939d-92fbcf53809c.png

在兩個(gè)經(jīng)典數(shù)據(jù)集 MSR-VTT 和 MSVD 上進(jìn)行的零樣本視頻 - 文本檢索實(shí)驗(yàn)結(jié)果如表 3 所示:

d1fe8842-7ef0-11ee-939d-92fbcf53809c.png

該研究還將本文模型與 SOTA 多模態(tài)預(yù)訓(xùn)練模型 OpenCLIP、ImageBind 在多模態(tài)理解任務(wù)上進(jìn)行了比較,結(jié)果如表 4 所示:

d220c326-7ef0-11ee-939d-92fbcf53809c.png

表 5 比較了在 Clotho 數(shù)據(jù)集和 Audiocaps 數(shù)據(jù)集上的零樣本文本 - 音頻檢索性能:

d23bc054-7ef0-11ee-939d-92fbcf53809c.png

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1094

    瀏覽量

    41266
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3521

    瀏覽量

    50427
  • 智能設(shè)備
    +關(guān)注

    關(guān)注

    5

    文章

    1098

    瀏覽量

    52148
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1224

    瀏覽量

    25448

原文標(biāo)題:用語言對(duì)齊多模態(tài)信息,北大騰訊等提出LanguageBind,刷新多個(gè)榜單

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    潤和軟件榮登2025模態(tài)AI大模型排行榜單

    近日,《互聯(lián)網(wǎng)周刊》聯(lián)合eNET研究院、德本咨詢、中國社會(huì)科學(xué)院信息化研究中心共同發(fā)布了“2025模態(tài)AI大模型”榜單。江蘇潤和軟件股份有限公司(以下簡稱“潤和軟件”)自主研發(fā)的“潤
    的頭像 發(fā)表于 06-25 14:37 ?468次閱讀

    基于MindSpeed MM玩轉(zhuǎn)Qwen2.5VL模態(tài)理解模型

    模態(tài)理解模型是讓AI像人類一樣,通過整合多維度信息(如視覺、語言、聽覺),理解數(shù)據(jù)背后的語義、情感、邏輯或場景,從而完成推理、決策
    的頭像 發(fā)表于 04-18 09:30 ?1483次閱讀
    基于MindSpeed MM玩轉(zhuǎn)Qwen2.5VL<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>理解模型

    移遠(yuǎn)通信智能模組全面接入模態(tài)AI大模型,重塑智能交互新體驗(yàn)

    隨著千行百業(yè)數(shù)智化進(jìn)程的不斷加速,模態(tài)AI大模型的應(yīng)用需求不斷攀升,圖像、語音、視頻多樣化的交互方式正逐漸成為推動(dòng)行業(yè)變革的新動(dòng)力。 ? 3月20日,全球物聯(lián)網(wǎng)整體解決方案供應(yīng)商移遠(yuǎn)通信宣布,其
    發(fā)表于 03-21 14:12 ?284次閱讀
    移遠(yuǎn)通信智能模組全面接入<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>AI大模型,重塑智能交互新體驗(yàn)

    移遠(yuǎn)通信智能模組全面接入模態(tài)AI大模型,重塑智能交互新體驗(yàn)

    隨著千行百業(yè)數(shù)智化進(jìn)程的不斷加速,模態(tài)AI大模型的應(yīng)用需求不斷攀升,圖像、語音、視頻多樣化的交互方式正逐漸成為推動(dòng)行業(yè)變革的新動(dòng)力。3月20日,全球物聯(lián)網(wǎng)整體解決方案供應(yīng)商移遠(yuǎn)通信宣布,其全系
    的頭像 發(fā)表于 03-20 19:03 ?433次閱讀
    移遠(yuǎn)通信智能模組全面接入<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>AI大模型,重塑智能交互新體驗(yàn)

    商湯“日日新”融合大模型登頂大語言模態(tài)榜單

    據(jù)弗若斯特沙利文(Frost & Sullivan, 簡稱“沙利文”)聯(lián)合頭豹研究院發(fā)布的《2025年中國大模型年度評(píng)測》結(jié)果顯示:在語言模態(tài)核心能力測評(píng)中,商湯“日日新”融合大模型斬獲國內(nèi)第一梯隊(duì)成績。
    的頭像 發(fā)表于 03-18 10:35 ?581次閱讀

    ?模態(tài)交互技術(shù)解析

    模態(tài)交互 模態(tài)交互( Multimodal Interaction )是指通過多種感官通道(如視覺、聽覺、觸覺)或多種交互方式(如語音
    的頭像 發(fā)表于 03-17 15:12 ?2054次閱讀

    體驗(yàn)MiniCPM-V 2.6 模態(tài)能力

    模態(tài)組網(wǎng)
    jf_23871869
    發(fā)布于 :2025年01月20日 13:40:48

    EE-33:用C語言對(duì)ADSP-21xx定時(shí)器進(jìn)行編程

    電子發(fā)燒友網(wǎng)站提供《EE-33:用C語言對(duì)ADSP-21xx定時(shí)器進(jìn)行編程.pdf》資料免費(fèi)下載
    發(fā)表于 01-15 15:46 ?0次下載
    EE-33:用C<b class='flag-5'>語言對(duì)</b>ADSP-21xx定時(shí)器進(jìn)行編程

    胡瀚接棒騰訊模態(tài)大模型研發(fā)

    近日,前微軟亞洲研究院視覺計(jì)算組的首席研究員胡瀚宣布加入騰訊,這一變動(dòng)引起了業(yè)界的廣泛關(guān)注。據(jù)悉,胡瀚將接替已離職的騰訊混元大模型技術(shù)負(fù)責(zé)人之一的劉威,全面負(fù)責(zé)騰訊
    的頭像 發(fā)表于 01-09 15:49 ?732次閱讀

    商湯日日新模態(tài)大模型權(quán)威評(píng)測第一

    剛剛,商湯科技日日新SenseNova模態(tài)大模型,在權(quán)威綜合評(píng)測權(quán)威平臺(tái)OpenCompass的模態(tài)評(píng)測中取得榜單第一。
    的頭像 發(fā)表于 12-20 10:39 ?1021次閱讀

    一文理解模態(tài)語言模型——下

    /understanding-multimodal-llms ? 《一文理解模態(tài)語言模型 - 上》介紹了什么是模態(tài)
    的頭像 發(fā)表于 12-03 15:18 ?595次閱讀
    一文理解<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>語言</b>模型——下

    一文理解模態(tài)語言模型——上

    /understanding-multimodal-llms 在過去幾個(gè)月中, OpenVINO? 架構(gòu)師 Yury閱讀了眾多有關(guān)模態(tài)語言模型的論文和博客,在此基礎(chǔ)上,推薦了一篇解讀
    的頭像 發(fā)表于 12-02 18:29 ?1187次閱讀
    一文理解<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大<b class='flag-5'>語言</b>模型——上

    利用OpenVINO部署Qwen2模態(tài)模型

    模態(tài)大模型的核心思想是將不同媒體數(shù)據(jù)(如文本、圖像、音頻和視頻)進(jìn)行融合,通過學(xué)習(xí)不同模態(tài)之間的關(guān)聯(lián),實(shí)現(xiàn)更加智能化的信息處理。簡單來說
    的頭像 發(fā)表于 10-18 09:39 ?1261次閱讀

    云知聲山海模態(tài)大模型UniGPT-mMed登頂MMMU測評(píng)榜首

    近日,模態(tài)人工智能模型基準(zhǔn)評(píng)測集MMMU更新榜單,云知聲山海模態(tài)大模型UniGPT-mMed以通用能力、醫(yī)療專業(yè)能力雙雙排名第一的優(yōu)異成
    的頭像 發(fā)表于 10-12 14:09 ?677次閱讀
    云知聲山海<b class='flag-5'>多</b><b class='flag-5'>模態(tài)</b>大模型UniGPT-mMed登頂MMMU測評(píng)榜首

    Meta發(fā)布模態(tài)LLAMA 3.2人工智能模型

    Meta Platforms近日宣布了一項(xiàng)重要技術(shù)突破,成功推出了模態(tài)LLAMA 3.2人工智能模型。這一創(chuàng)新模型不僅能夠深度解析文本信息,還實(shí)現(xiàn)了對(duì)圖像內(nèi)容的精準(zhǔn)理解,標(biāo)志著Meta在AI
    的頭像 發(fā)表于 09-27 11:44 ?700次閱讀