99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 17:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

常見的卷積神經(jīng)網(wǎng)絡(luò)模型 典型的卷積神經(jīng)網(wǎng)絡(luò)模型

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中最流行的模型之一,其結(jié)構(gòu)靈活,處理圖像、音頻、自然語言等各種任務(wù)表現(xiàn)出色。在本文中,我們將介紹常見的卷積神經(jīng)網(wǎng)絡(luò)模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。

1. LeNet

LeNet是卷積神經(jīng)網(wǎng)絡(luò)的開山祖師,是由Yan LeCunn在1998年提出的經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)模型。它最初是為手寫體數(shù)字識別而設(shè)計的,由卷積層、池化層和全連接層組成。LeNet 的卷積層使用了sigmoid作為激活函數(shù),而池化層使用了平均池化。LeNet是現(xiàn)代卷積神經(jīng)網(wǎng)絡(luò)模型的重要里程碑。

2. AlexNet

AlexNet是2012年ImageNet大規(guī)模視覺識別挑戰(zhàn)賽冠軍的模型,它被認(rèn)為是卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷史上的分水嶺。AlexNet在其時代比之前的LeNet模型更深、更寬,使用了更多的神經(jīng)元和非線性激活函數(shù)ReLU。與LeNet相比,AlexNet還使用了Dropout和數(shù)據(jù)增強(qiáng)技術(shù),進(jìn)一步提高了模型的泛化能力。

3. VGG

VGG是由Karen Simonyan和Andrew Zisserman在2014年提出的模型。VGG網(wǎng)絡(luò)結(jié)構(gòu)非常簡單,由多個卷積層和池化層組成,幾乎所有卷積層和池化層的大小都為3×3,同時使用了大量的卷積層。VGG的網(wǎng)絡(luò)結(jié)構(gòu)深度達(dá)到了16或19層,使其在ImageNet比賽中獲得了顯著的成績。VGG的一個重要貢獻(xiàn)是在卷積神經(jīng)網(wǎng)絡(luò)模型的設(shè)計中闡明了卷積層和全連接層之間的關(guān)系。

4. GoogLeNet

由Google團(tuán)隊開發(fā)的GoogLeNet(Inception-v1)是一種極深的網(wǎng)絡(luò),其特點在于具有多個不同大小的卷積核和池化的并行模塊。GoogLeNet還使用了1×1的卷積層,它可以降低計算量,同時增強(qiáng)了網(wǎng)絡(luò)的非線性能力。這是GoogLeNet中最大的創(chuàng)新。GoogLeNet結(jié)構(gòu)很深,但它通過將卷積層分解成小卷積層,從而避免了參數(shù)過多的問題。

5. ResNet

ResNet是2015年由Kaiming He和他的同事提出的一種深度殘差網(wǎng)絡(luò)。ResNet在深層神經(jīng)網(wǎng)絡(luò)訓(xùn)練中解決了梯度消失的問題,使網(wǎng)絡(luò)具有更高的分類精度。ResNet中使用了殘差學(xué)習(xí),即通過添加跨層連接,每個殘差單元在原有基礎(chǔ)上進(jìn)行學(xué)習(xí)。這種方法讓即使網(wǎng)絡(luò)非常深,也不會影響網(wǎng)絡(luò)的收斂,從而讓網(wǎng)絡(luò)可以更好地訓(xùn)練。

6. Inception

Inception由Google機(jī)器人科學(xué)家Christian Szegedy和團(tuán)隊提出的一種網(wǎng)絡(luò)結(jié)構(gòu),其核心思想是在同一層中采用多個不同大小的卷積核和池化技術(shù),并將它們合并在一起。Inception V1是第一代版本,因其多層結(jié)構(gòu)和特殊設(shè)計而成為當(dāng)時最先進(jìn)的模型之一。

7. Xception

Xception是谷歌DeepMind在2016年提出的一種高效的卷積神經(jīng)網(wǎng)絡(luò)模型。Xception使用了深度可分離卷積層,將卷積層的空間卷積和通道卷積進(jìn)行分離。通常的卷積層近似于進(jìn)行了這兩個操作的點積,但使用深度可分離卷積可使用更少的參數(shù),同時減少了計算復(fù)雜度,提高了模型的性能。

結(jié)論:

卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)中最流行的模型之一,已發(fā)展出許多經(jīng)典模型。本文詳細(xì)介紹了常見的卷積神經(jīng)網(wǎng)絡(luò)模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。每個模型都有其獨特的設(shè)計思想和模型結(jié)構(gòu),可以根據(jù)應(yīng)用場景選擇適合的模型。在未來,卷積神經(jīng)網(wǎng)絡(luò)定將在更多領(lǐng)域中實現(xiàn)重要的進(jìn)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?676次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性 學(xué)習(xí)率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學(xué)習(xí)率可
    的頭像 發(fā)表于 02-12 15:51 ?946次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?930次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?931次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 01-09 10:24 ?1215次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團(tuán)隊開發(fā)的開源機(jī)器學(xué)習(xí)框架,它支持多種深度學(xué)習(xí)模型的構(gòu)建和訓(xùn)練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴(kuò)展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點: 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復(fù)雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1217次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?808次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種
    的頭像 發(fā)表于 11-15 14:53 ?1884次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?851次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1789次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1136次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    歸一化以產(chǎn)生一個概率分布(97.5%的貓,2.1%的豹,0.4%的虎,等等)。 這就是神經(jīng)網(wǎng)絡(luò)建模的全過程。然而,卷積核與濾波器的權(quán)重和內(nèi)容仍然未知,必須通過網(wǎng)絡(luò)訓(xùn)練來確定使模型能夠工
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡(luò)-車牌識別

    LPRNet基于深層神經(jīng)網(wǎng)絡(luò)設(shè)計,通過輕量級的卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)車牌識別。它采用端到端的訓(xùn)練方式,不依賴字符分割,能夠直接處理整張車牌圖像,并輸出最終的字符序列。這種設(shè)計提高了識別的實時性和準(zhǔn)確性
    發(fā)表于 10-10 16:40

    UNet模型屬于哪種神經(jīng)網(wǎng)絡(luò)

    U-Net模型屬于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學(xué)計算機(jī)科學(xué)系的研究人員在2015年提出,專為生物醫(yī)學(xué)圖像
    的頭像 發(fā)表于 07-24 10:59 ?5576次閱讀