99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)模型原理 卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),是在圖像、語音、文本和視頻等方面的任務(wù)中最有效的神經(jīng)網(wǎng)絡(luò)之一。它的總體思想是使用在輸入數(shù)據(jù)之上的一系列過濾器來捕捉數(shù)據(jù)的不同方面,從而獲得預(yù)測和最終的表??現(xiàn)。本文將提供有關(guān)卷積神經(jīng)網(wǎng)絡(luò)模型的工作原理和結(jié)構(gòu)的詳細(xì)信息,包括其在圖像、語音和自然語言處理等不同領(lǐng)域的應(yīng)用。

卷積神經(jīng)網(wǎng)絡(luò)的工作原理:

卷積神經(jīng)網(wǎng)絡(luò)的核心概念是卷積運(yùn)算。卷積運(yùn)算是一種數(shù)學(xué)方法,用于在數(shù)字信號或圖像中尋找特征模式。卷積運(yùn)算通常使用過濾器(也稱為內(nèi)核)對輸入數(shù)據(jù)進(jìn)行滑動計算,以產(chǎn)生輸出。過濾器包含權(quán)重和偏差。卷積層中的多個過濾器可以捕捉輸入中不同的特征。

卷積神經(jīng)網(wǎng)絡(luò)的輸入通常是圖像或以圖像為基礎(chǔ)的數(shù)據(jù),因為卷積神經(jīng)網(wǎng)絡(luò)最初是用于視覺任務(wù)的。它的輸入層可能是圖像的像素矩陣或者是聲音、文本等不同領(lǐng)域數(shù)據(jù)的轉(zhuǎn)換形式。卷積神經(jīng)網(wǎng)絡(luò)通過多個卷積層,池化層和全連接層構(gòu)成,這些層的堆疊使得網(wǎng)絡(luò)可以提取輸入數(shù)據(jù)的多個層次的特征。通過多個卷積層和激活函數(shù),卷積神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)對輸入數(shù)據(jù)的不同特征提取,逐漸將輸入數(shù)據(jù)整合成高維抽象的特征表達(dá),最后通過全連接層進(jìn)行分類、回歸或其他任務(wù)。

卷積層是卷積神經(jīng)網(wǎng)絡(luò)中的主要構(gòu)建塊。卷積層的輸出可以通過將過濾器更多次地卷積輸入數(shù)據(jù)層而獲得。過濾器可以捕獲輸入的空間和時間細(xì)節(jié)。這些空間和時間特征以多個通道的形式組合在一起,形成了卷積層輸出。卷積層的濾波器可視為小型矩陣,它將其自動旋轉(zhuǎn)和映射到輸入數(shù)據(jù)上,以捕捉特定的圖像或語音特征。

池化層是用于減少參數(shù)數(shù)量和加速學(xué)習(xí)的附加層。池化層將輸入數(shù)據(jù)在其窗口中進(jìn)行加權(quán)平均,從而減少計算負(fù)載并減少模型參數(shù)數(shù)量。

全連接層是卷積神經(jīng)網(wǎng)絡(luò)的最后一層,用于將高度抽象化的特征向量映射到特定的輸出類別。輸出層包括softmax函數(shù),用于將輸出概率映射到各個分類標(biāo)簽上。

卷積神經(jīng)網(wǎng)絡(luò)模型結(jié)構(gòu):

卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和其它深度學(xué)習(xí)模型不同。卷積神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu)主要由卷積層、池化層和全連接層構(gòu)成。

卷積層是輸入數(shù)據(jù)中的每個圖像區(qū)域都與過濾器進(jìn)行卷積,其結(jié)果是一個新的輸出值。卷積層中最常用的過濾器的大小通常是3x3或5x5。

池化層也稱為下采樣層。它的主要功能是減少圖像處理所需的計算和內(nèi)存資源。池化層通常使用自適應(yīng)平均池化或自適應(yīng)最大池化,以便調(diào)整圖像大小,減少權(quán)重并提高大量數(shù)據(jù)訓(xùn)練的效率。深度學(xué)習(xí)的另一個優(yōu)點(diǎn)是在進(jìn)行大規(guī)模圖片識別時不必使用固定大小的區(qū)域來檢測特征。

全連接層是一種特殊類型的神經(jīng)網(wǎng)絡(luò)層,其中每個神經(jīng)元與上一層的所有神經(jīng)元相連接。全連接層是卷積神經(jīng)網(wǎng)絡(luò)的最后一層,其主要目的是為神經(jīng)網(wǎng)絡(luò)確定最終的分類結(jié)果。

最近,卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的混合使用已經(jīng)開始流行。這種結(jié)構(gòu)稱為卷積循環(huán)神經(jīng)網(wǎng)絡(luò)(Convolutional Recurrent Network)。這種神經(jīng)網(wǎng)絡(luò)首先使用卷積層和池化層來提取輸入中的特征,然后使用循環(huán)神經(jīng)網(wǎng)絡(luò)在時間序列上對提取的特征進(jìn)行編碼,這種結(jié)構(gòu)已經(jīng)在語音識別和文本處理等廣泛應(yīng)用。

應(yīng)用:

卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)在圖像、語音和文本等不同領(lǐng)域中得到了廣泛的應(yīng)用,下面是幾個例子:

圖像識別:卷積神經(jīng)網(wǎng)絡(luò)在圖像識別方面扮演重要角色。卷積層可以捕捉圖像中的邊緣和紋理等低級特征,用于提取圖像的高級結(jié)構(gòu)特征,用于決定圖像的類別和標(biāo)簽。

語音識別:卷積神經(jīng)網(wǎng)絡(luò)在語音識別方面也扮演著重要的角色。卷積神經(jīng)網(wǎng)絡(luò)在輸入頻率域中對信號進(jìn)行了特殊處理。這種處理具有與人聽覺系統(tǒng)相似的特征,并成功地將其應(yīng)用于語音識別和自然語言處理領(lǐng)域。

文本處理:卷積神經(jīng)網(wǎng)絡(luò)可以應(yīng)用于文本分類、垃圾郵件識別、自然語言處理等方面。它可以將每個單詞表示為向量,從而捕捉上下文和句子中的語義關(guān)系,最終預(yù)測文本數(shù)據(jù)的標(biāo)簽。

總之,卷積神經(jīng)網(wǎng)絡(luò)在圖像處理、語音識別和自然語言處理等許多領(lǐng)域中取得了顯著的成果。卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)成為了深度學(xué)習(xí)方面最重要的工具之一。對于處理大規(guī)模數(shù)據(jù)集,卷積神經(jīng)網(wǎng)絡(luò)的層次結(jié)構(gòu)設(shè)計,使它具有非常強(qiáng)的表達(dá)能力和分類能力,能夠有效處理復(fù)雜的模式識別和圖像分類問題。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP
    的頭像 發(fā)表于 02-12 15:53 ?661次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?904次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 01-09 10:24 ?1183次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    : TensorFlow是由Google Brain團(tuán)隊開發(fā)的開源機(jī)器學(xué)習(xí)框架,它支持多種深度學(xué)習(xí)模型的構(gòu)建和訓(xùn)練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴(kuò)展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點(diǎn): 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?668次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復(fù)雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 15:10 ?1206次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?802次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1865次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其靈感來源于生物的視覺皮層機(jī)制。它通過模擬人類視覺系統(tǒng)的處理方式,能夠自動提取圖像特征,從而在圖像識別和分類任務(wù)中表現(xiàn)出色。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?844次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?1773次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks,
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)與工作機(jī)制

    結(jié)構(gòu)與工作機(jī)制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)主要包括以下幾個部分: 記憶單元(Memory Cell) :
    的頭像 發(fā)表于 11-13 10:05 ?1628次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強(qiáng)大工具,例如識別音頻信號或圖像信號中的復(fù)雜模式就是其應(yīng)用之一。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)? 神經(jīng)網(wǎng)絡(luò)是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu)
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡(luò)-車牌識別

    LPRNet基于深層神經(jīng)網(wǎng)絡(luò)設(shè)計,通過輕量級的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)車牌識別。它采用端到端的訓(xùn)練方式,不依賴字符分割,能夠直接處理整張車牌圖像,并輸出最終的字符序列。這種設(shè)計提高了識別的實(shí)時性和準(zhǔn)確性
    發(fā)表于 10-10 16:40

    UNet模型屬于哪種神經(jīng)網(wǎng)絡(luò)

    U-Net模型屬于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學(xué)計算機(jī)科學(xué)系的研究人員在2015年提出,專為生物醫(yī)學(xué)圖像
    的頭像 發(fā)表于 07-24 10:59 ?5537次閱讀

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一個多層神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-19 17:19 ?1557次閱讀