99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習算法匯總 機器學習算法分類 機器學習算法模型

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機器學習算法匯總 機器學習算法分類 機器學習算法模型

機器學習是人工智能的分支之一,它通過分析和識別數(shù)據(jù)模式,學習從中提取規(guī)律,并用于未來的決策和預測。在機器學習中,算法是最基本的組成部分之一。算法是解決具體問題的一系列步驟,機器學習的算法被設(shè)計用于從大量的數(shù)據(jù)中自動學習并不斷改進自身的性能。本文將為大家介紹機器學習算法匯總和分類,以及常用的機器學習算法模型。

機器學習算法匯總

機器學習算法的類型繁多,主要分為無監(jiān)督學習、監(jiān)督學習和強化學習三種。無監(jiān)督學習是指沒有明確的目標變量,機器學習系統(tǒng)需要自己找出數(shù)據(jù)中的模式。監(jiān)督學習是指輸入數(shù)據(jù)已經(jīng)被標記好了結(jié)果,機器學習系統(tǒng)可根據(jù)標記來學習預測新實例的標記。強化學習是指機器學習系統(tǒng)通過嘗試與環(huán)境交互來學習最佳行動策略。

無監(jiān)督學習常用的算法包括:聚類、關(guān)聯(lián)分析、主題模型等。聚類是將相似的樣本分組,不相似的樣本分離。關(guān)聯(lián)分析是在數(shù)據(jù)中尋找有趣的關(guān)聯(lián)關(guān)系,例如購物籃中的商品組合。主題模型是根據(jù)文本數(shù)據(jù)中的詞匯分布模型,生成該文本的主題。

監(jiān)督學習常用的算法包括:回歸、分類、推薦系統(tǒng)等?;貧w從已有數(shù)據(jù)中尋找函數(shù)的最佳擬合,可用于預測數(shù)值型結(jié)果。分類將樣本分到預先定義的類別,可用于預測分類型結(jié)果。推薦系統(tǒng)是指在數(shù)據(jù)集中尋找相關(guān)的數(shù)據(jù),用于向用戶推薦個性化內(nèi)容。

強化學習常用的算法包括:Q學習、策略梯度等。Q學習是用于動態(tài)決策過程的一種學習算法,用于從環(huán)境和獎勵反饋中學習最佳行動策略。策略梯度是優(yōu)化策略的一種方法,可以在高維的連續(xù)動作空間中實現(xiàn)優(yōu)化。

機器學習算法分類

除了前面提到的分類方式,機器學習算法還可以按照其學習方式、算法特點等方式進行分類。

按照學習方式,機器學習算法被分為基于實例的學習、基于統(tǒng)計的學習、基于規(guī)則的學習等?;趯嵗膶W習是指學習從給定的例子中進行的,例如KNN算法。基于統(tǒng)計的學習是指學習基于統(tǒng)計方法和模型,例如樸素貝葉斯算法?;谝?guī)則的學習是指從給定的一組規(guī)則集中進行學習,例如決策樹算法。

按照算法特點,機器學習算法可以分為單一算法、集成算法等。單一算法是指使用一種算法來解決問題,例如線性回歸算法。集成算法是指將多個算法進行組合,形成更強大的算法,例如隨機森林算法。

機器學習算法模型

機器學習算法模型是指通過機器學習算法生成的可以應(yīng)用于實際問題的模型。機器學習算法模型可以分為決策樹模型、邏輯回歸模型、神經(jīng)網(wǎng)絡(luò)模型等。

決策樹模型通過迭代地選擇最佳特征,并以分裂的方式形成一顆樹,由于它輸出結(jié)果的可解釋性強,因此在數(shù)據(jù)挖掘和分類問題中特別流行。

邏輯回歸模型是一種借鑒了生物學上的回歸分析方法而來的機器學習模型,邏輯回歸模型在分類問題中被廣泛應(yīng)用,例如判斷垃圾郵件。

神經(jīng)網(wǎng)絡(luò)模型是一種通過模擬人類神經(jīng)系統(tǒng),學習高度機械化和抽象的任務(wù)的模型,由于其強大的能力,神經(jīng)網(wǎng)絡(luò)模型在圖像識別和語音識別等領(lǐng)域廣泛應(yīng)用。

總結(jié)

本文概述了機器學習算法的分類和常見的機器學習算法模型,機器學習算法的發(fā)展越來越成熟,應(yīng)用范圍越來越廣泛,這些算法的應(yīng)用已經(jīng)滲透到我們的生活中,我們有理由相信,未來機器學習算法的發(fā)展將會在更多領(lǐng)域創(chuàng)造更加驚人的應(yīng)用價值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    FPGA在機器學習中的具體應(yīng)用

    隨著機器學習和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效的硬件加速平臺
    的頭像 發(fā)表于 07-16 15:34 ?228次閱讀

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現(xiàn)的基礎(chǔ)算法的應(yīng)用

    視覺巡線,展示了如何從數(shù)據(jù)采集、模型訓練到機器人部署的完整流程。 值得注意的是,深度學習模型的實時性對機器人計算資源提出了較高要求,優(yōu)化
    發(fā)表于 05-03 19:41

    十大鮮為人知卻功能強大的機器學習模型

    本文轉(zhuǎn)自:QuantML當我們談?wù)?b class='flag-5'>機器學習時,線性回歸、決策樹和神經(jīng)網(wǎng)絡(luò)這些常見的算法往往占據(jù)了主導地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強大的
    的頭像 發(fā)表于 04-02 14:10 ?514次閱讀
    十大鮮為人知卻功能強大的<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>模型</b>

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器
    的頭像 發(fā)表于 02-13 09:39 ?359次閱讀

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?533次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統(tǒng)機器學習方法和應(yīng)用指導

    在上一篇文章中,我們介紹了機器學習的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?1184次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應(yīng)用指導

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統(tǒng)具有人的學習能力以便實現(xiàn)人工智能。因為沒有學習能力的系統(tǒng)很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?963次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關(guān)系

    緊密。 NPU的起源與特點 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計目標是提高機器學習算法的運行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?1214次閱讀

    【每天學點AI】KNN算法:簡單有效的機器學習分類

    過程,其實就是一個簡單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機器學習算法。|什么是KNN
    的頭像 發(fā)表于 10-31 14:09 ?843次閱讀
    【每天學點AI】KNN<b class='flag-5'>算法</b>:簡單有效的<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>分類</b>器

    人工智能、機器學習和深度學習存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個很大的子集是機器學習——讓算法從數(shù)據(jù)中學習
    發(fā)表于 10-24 17:22 ?2976次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區(qū)別

    AI大模型與深度學習的關(guān)系

    AI大模型與深度學習之間存在著密不可分的關(guān)系,它們互為促進,相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學習是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度學習
    的頭像 發(fā)表于 10-23 15:25 ?2881次閱讀

    AI大模型與傳統(tǒng)機器學習的區(qū)別

    AI大模型與傳統(tǒng)機器學習在多個方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參
    的頭像 發(fā)表于 10-23 15:01 ?2566次閱讀

    LIBS結(jié)合機器學習算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導擊穿光譜結(jié)合機器學習的茶葉鑒別方法。將茶葉茶,水數(shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機器
    的頭像 發(fā)表于 10-22 18:05 ?644次閱讀
    LIBS結(jié)合<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機器學習算法在時間序列預測中的應(yīng)用,內(nèi)容全面,循序漸進。每一章都經(jīng)過精心設(shè)計,對理論知識進行了詳細的闡述,對實際案例進行了生動的展示,使讀者在理論與實踐
    發(fā)表于 08-12 11:28