99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡結構組成與解釋

Dbwd_Imgtec ? 來源:未知 ? 2023-06-27 10:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:機器學習算法那些事
卷積神經網絡是以卷積層為主的深度網路結構,網絡結構包括有卷積層、激活層、BN層、池化層、FC層、損失層等。卷積操作是對圖像和濾波矩陣做內積(元素相乘再求和)的操作。

1. 卷積層

常見的卷積操作如下:
卷積操作 解釋 圖解
標準卷積 一般采用3x3、5x5、7x7的卷積核進行卷積操作。???????

wKgZomTn-mCABSJ_AALpQgaVk54548.gif

分組卷積 將輸入特征圖按通道均分為 x 組,然后對每一組進行常規(guī)卷積,最后再進行合并。

wKgZomTn-mCAfp9zAAG0j6-_DtU602.png

空洞卷積 為擴大感受野,在卷積核里面的元素之間插入空格來“膨脹”內核,形成“空洞卷積”(或稱膨脹卷積),并用膨脹率參數L表示要擴大內核的范圍,即在內核元素之間插入L-1個空格。當L=1時,則內核元素之間沒有插入空格,變?yōu)闃藴示矸e。

wKgZomTn-mCAXgZFAABNCc-q15Y125.png

深度可分離卷積 深度可分離卷積包括為逐通道卷積和逐點卷積兩個過程。????

wKgZomTn-mGAIj5CAAHCtbtmMps132.png

(通道卷積,2D標準卷積)

wKgZomTn-mGAYG2yAAE-7ndBAw0817.png

(逐點卷積,1x1卷積

反卷積 屬于上采樣過程,“反卷積”是將卷積核轉換為稀疏矩陣后進行轉置計算。

wKgZomTn-mGASZesAAA-z4w-FiA211.png

可變形卷積 指標準卷積操作中采樣位置增加了一個偏移量offset,如此卷積核在訓練過程中能擴展到很大的范圍。

wKgZomTn-mGAIYwaAAGksD8YjKM025.png

補充:

1 x 1卷積即用1 x 1的卷積核進行卷積操作,其作用在于升維與降維。升維操作常用于chennel為1(即是通道數為1)的情況下,降維操作常用于chennel為n(即是通道數為n)的情況下。??????????????

降維:通道數不變,數值改變。

wKgZomTn-mGAdnkWAACWWZWYNG8958.png升維:通道數改變?yōu)閗ernel的數量(即為filters),運算本質可以看為全連接。wKgZomTn-mGAIegwAAD3jsM_X7E311.png卷積計算在深度神經網絡中的量是極大的,壓縮卷積計算量的主要方法如下:
序號 方法
1 采用多個3x3卷積核代替大卷積核(如用兩個3 x 3的卷積核代替5 x 5的卷積核)
2 采用深度可分離卷積(分組卷積)
3 通道Shuffle
4 Pooling層
5 Stride = 2
6 等等

2. 激活層

介紹:為了提升網絡的非線性能力,以提高網絡的表達能力。每個卷積層后都會跟一個激活層。激活函數主要分為飽和激活函數(sigmoid、tanh)與非飽和激活函數(ReLU、Leakly ReLU、ELU、PReLU、RReLU)。非飽和激活函數能夠解決梯度消失的問題,能夠加快收斂速度。??????????????常用函數:ReLU函數、Leakly ReLU函數、ELU函數等wKgZomTn-mGAfZGbAABqysWUDw4818.pngReLU函數wKgZomTn-mKAQcPqAACJ3D6-0xg266.pngLeakly ReLU函數

wKgZomTn-mKAHQbMAACL3KN7cnc975.png

ELU函數


3. BN層(BatchNorm)介紹:通過一定的規(guī)范化手段,把每層神經網絡任意神經元的輸入值的分布強行拉回到均值為0,方差為1的標準正態(tài)分布。BatchNorm是歸一化的一種手段,會減小圖像之間的絕對差異,突出相對差異,加快訓練速度。但不適用于image-to-image以及對噪聲明感的任務中。常用函數:BatchNorm2dpytorch用法:nn.BatchNorm2d(num_features, eps, momentum, affine)num_features:一般輸入參數為batch_sizenum_featuresheight*width,即為其中特征的數量。eps:分母中添加的一個值,目的是為了計算的穩(wěn)定性,默認為:1e-5。momentum:一個用于運行過程中均值和方差的一個估計參數(我的理解是一個穩(wěn)定系數,類似于SGD中的momentum的系數)。

affine:當設為true時,會給定可以學習的系數矩陣gamma和beta。


4. 池化層(pooling)介紹:pooling一方面使特征圖變小,簡化網絡計算復雜度。一方面通過多次池化壓縮特征,提取主要特征。屬于下采樣過程。常用函數:Max Pooling(最大池化)、Average Pooling(平均池化)等。MaxPooling 與 AvgPooling用法:1. 當需綜合特征圖上的所有信息做相應決策時,通常使用AvgPooling,例如在圖像分割領域中用Global AvgPooling來獲取全局上下文信息;在圖像分類中在最后幾層中會使用AvgPooling。2. 在圖像分割/目標檢測/圖像分類前面幾層,由于圖像包含較多的噪聲和目標處理無關的信息,因此在前幾層會使用MaxPooling去除無效信息。wKgZomTn-mKAP_nDAADxX1uRkHc094.png

補充:上采樣層重置圖像大小為上采樣過程,如Resize,雙線性插值直接縮放,類似于圖像縮放,概念可見最鄰近插值算法和雙線性插值算法。實現(xiàn)函數有nn.functional.interpolate(input, size = None, scale_factor = None, mode = 'nearest', align_corners = None)和nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride = 1, padding = 0, output_padding = 0, bias = True)


5. FC層(全連接層)介紹:連接所有的特征,將輸出值送給分類器。主要是對前層的特征進行一個加權和(卷積層是將數據輸入映射到隱層特征空間),將特征空間通過線性變換映射到樣本標記空間(label)。全連接層可以通過1 x 1卷機+global average pooling代替。可以通過全連接層參數冗余,全連接層參數和尺寸相關。常用函數:nn.Linear(in_features, out_features, bias)wKgZomTn-mKAa6UhAAChrapTAFw686.jpg補充:分類器包括線性分類器與非線性分類器。
分類器 介紹?? 常見種類 優(yōu)缺點
線性分類器 線性分類器就是用一個“超平面”將正、負樣本隔離開 LR、Softmax、貝葉斯分類、單層感知機、線性回歸、SVM(線性核)等 線性分類器速度快、編程方便且便于理解,但是擬合能力低
非線性分類器 非線性分類器就是用一個“超曲面”或者多個超平(曲)面的組合將正、負樣本隔離開(即,不屬于線性的分類器) 決策樹、RF、GBDT、多層感知機、SVM(高斯核)等 非線性分類器擬合能力強但是編程實現(xiàn)較復雜,理解難度大


6. 損失層介紹:設置一個損失函數用來比較網絡的輸出和目標值,通過最小化損失來驅動網絡的訓練。網絡的損失通過前向操作計算,網絡參數相對于損失函數的梯度則通過反向操作計算。

常用函數:分類問題損失(離散值:分類問題、分割問題):nn.BCELoss、nn.CrossEntropyLoss等?;貧w問題損失(連續(xù)值:推測問題、回歸分類問題):nn.L1Loss、nn.MSELoss、nn.SmoothL1Loss等。


7. Dropout層

介紹:在不同的訓練過程中隨機扔掉一部分神經元,以防止過擬合,一般用在全連接層。在測試過程中不使用隨機失活,所有的神經元都激活。?????????????????????

常用函數:nn.dropout
8. 優(yōu)化器介紹:為了更高效的優(yōu)化網絡結構(損失函數最小),即是網絡的優(yōu)化策略,主要方法如下:
解釋?? 優(yōu)化器種類? 特點
基于梯度下降原則(均使用梯度下降算法對網絡權重進行更新,區(qū)別在于使用的樣本數量不同)?????? GD(梯度下降); SGD(隨機梯度下降,面向一個樣本); BGD(批量梯度下降,面向全部樣本); MBGD(小批量梯度下降,面向小批量樣本)????? 引入隨機性和噪聲
基于動量原則(根據局部歷史梯度對當前梯度進行平滑) Momentum(動量法); NAG(Nesterov Accelerated Gradient)
???
加入動量原則,具有加速梯度下降的作用????
自適應學習率(對于不同參數使用不同的自適應學習率;Adagrad使用梯度平方和、Adadelta和RMSprop使用梯度一階指數平滑,RMSprop是Adadelta的一種特殊形式、Adam吸收了Momentum和RMSprop的優(yōu)點改進了梯度計算方式和學習率)??? Adagrad; Adadelta; RMSprop; Adam????? 自適應學習
常用優(yōu)化器為Adam,用法為:torch.optim.Adam。???????

補充:卷積神經網絡正則化是為減小方差,減輕過擬合的策略,方法有:L1正則(參數絕對值的和); L2正則(參數的平方和,weight_decay:權重衰退)。


9. 學習率?介紹:學習率作為監(jiān)督學習以及深度學習中重要的超參,其決定著目標函數能否收斂到局部最小值以及合適收斂到最小值。合適的學習率能夠使目標函數在合適的時間內收斂到局部最小值。????

常用函數:torch.optim.lr_scheduler; ExponentialLR; ReduceLROnplateau; CyclicLR等。???????


卷積神經網絡的常見結構

常見結構有:跳連結構(ResNet)、并行結構(Inception V1-V4即GoogLeNet)、輕量型結構(MobileNetV1)、多分支結構(SiameseNet; TripletNet; QuadrupletNet; 多任務網絡等)、Attention結構(ResNet+Attention)

結構???????????? 介紹與特點 圖示
跳連結構(代表:ResNet) 2015年何愷明團隊提出。引入跳連的結構來防止梯度消失問題,今兒可以進一步加大網絡深度。擴展結構有:ResNeXt、DenseNet、WideResNet、ResNet In ResNet、Inception-ResNet等???????????????

wKgZomTn-mKAGpyuAAD6Gk-bPv4430.png

并行結構(代表:Inception V1-V4 2014年Google團隊提出。不僅強調網絡的深度,還考慮網絡的寬度。其使用1×1的卷積來進行升降維,在多個尺寸上同時進行卷積再聚合。其次利用稀疏矩陣分解成密集矩陣計算的原理加快收斂速度。??

wKgZomTn-mKAEnfQAABW4twhBEI811.jpg

輕量型結構(代表:MobileNetV1 2017年Google團隊提出。為了設計能夠用于移動端的網絡結構,使用Depth-wise Separable Convolution的卷積方式代替?zhèn)鹘y(tǒng)卷積方式,以達到減少網絡權值參數的目的。擴展結構有:MobileNetV2、MobileNetV3、SqueezeNet、ShuffleNet V1、ShuffleNet V2等????????

wKgZomTn-mKAc4rbAAEwUHTOThE845.png

多分支結構(代表:TripletNet? 基于多個特征提取方法提出,通過比較距離來學習有用的變量。該網絡由3個具有相同前饋網絡(共享參數)組成的,需要輸入是3個樣本,一個正樣本和兩個負樣本,或者一個負樣本和兩個正樣本。訓練的目標是讓相同類別之間的距離竟可能的小,讓不同的類別之間距離竟可能的大。常用于人臉識別。

wKgZomTn-mKAPZNiAACLX2W0lH4304.jpg

Attention結構(代表:ResNet+Attention) 對于全局信息,注意力機制會重點關注一些特殊的目標區(qū)域,也就是注意力焦點,進而利用有限的注意力資源對信息進行篩選,提高信息處理的準確性和效率。注意力機制有Soft-Attention和Hard-Attention區(qū)分,可以作用在特征圖上、尺度空間上、channel尺度上和不同時刻歷史特征上等。??????????????

wKgZomTn-mOAHCURAALNtxmdgiA258.png

參考資料鏈接:??https://www.bilibili.com/video/BV1we4y1X7vy/?spm_id_from=333.880.my_history.page.click&vd_source=8332e741acbb75b438e9c1c91efed022

END

歡迎加入Imagination GPU人工智能交流2群

wKgZomTn-mOAV_0GAABN8aBfIqc985.jpg

入群請加小編微信:eetrend89

(添加請備注公司名和職稱)

推薦閱讀 對話Imagination中國區(qū)董事長:以GPU為支點加強軟硬件協(xié)同,助力數字化轉型

Imagination Technologies是一家總部位于英國的公司,致力于研發(fā)芯片和軟件知識產權(IP),基于Imagination IP的產品已在全球數十億人的電話、汽車、家庭和工作 場所中使用。獲取更多物聯(lián)網、智能穿戴、通信、汽車電子、圖形圖像開發(fā)等前沿技術信息,歡迎關注 Imagination Tech!


原文標題:卷積神經網絡結構組成與解釋

文章出處:【微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • imagination
    +關注

    關注

    1

    文章

    599

    瀏覽量

    62216

原文標題:卷積神經網絡結構組成與解釋

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    無刷電機小波神經網絡轉子位置檢測方法的研究

    摘要:論文通過對無刷電機數學模型的推導,得出轉角:與三相相電壓之間存在映射關系,因此構建了一個以三相相電壓為輸人,轉角為輸出的小波神經網絡來實現(xiàn)轉角預測,并采用改進遺傳算法來訓練網絡結構與參數,借助
    發(fā)表于 06-25 13:06

    BP神經網絡網絡結構設計原則

    BP(back propagation)神經網絡是一種按照誤差逆向傳播算法訓練的多層前饋神經網絡,其網絡結構設計原則主要基于以下幾個方面: 一、層次結構 輸入層 :接收外部輸入信號,不
    的頭像 發(fā)表于 02-12 16:41 ?740次閱讀

    BP神經網絡卷積神經網絡的比較

    BP神經網絡卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP
    的頭像 發(fā)表于 02-12 15:53 ?662次閱讀

    BP神經網絡的實現(xiàn)步驟詳解

    BP神經網絡的實現(xiàn)步驟主要包括以下幾個階段:網絡初始化、前向傳播、誤差計算、反向傳播和權重更新。以下是對這些步驟的詳細解釋: 一、網絡初始化 確定
    的頭像 發(fā)表于 02-12 15:50 ?645次閱讀

    BP神經網絡的基本原理

    BP神經網絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經網絡基本原理的介紹: 一、網絡結構 BP神經網絡
    的頭像 發(fā)表于 02-12 15:13 ?847次閱讀

    卷積神經網絡的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團隊開發(fā)的開源機器學習框架,它支持多種深度學習模型的構建和訓練,包括卷積神經網絡。TensorFlow以其靈活性和可擴展性而聞名,適用于研究和生產環(huán)境。 特點: 靈活性: TensorFlow提供了豐富的API,允許用戶
    的頭像 發(fā)表于 11-15 15:20 ?668次閱讀

    卷積神經網絡的參數調整方法

    卷積神經網絡因其在處理具有空間層次結構的數據時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數的合理設置。參數調整是一個復雜的過程,涉及到多個超參數的選擇和優(yōu)化。 網絡
    的頭像 發(fā)表于 11-15 15:10 ?1206次閱讀

    卷積神經網絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發(fā)展,卷積神經網絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?803次閱讀

    卷積神經網絡與傳統(tǒng)神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統(tǒng)神經網絡是兩種常見的模型。 1.
    的頭像 發(fā)表于 11-15 14:53 ?1867次閱讀

    深度學習中的卷積神經網絡模型

    卷積神經網絡是一種前饋神經網絡,其靈感來源于生物的視覺皮層機制。它通過模擬人類視覺系統(tǒng)的處理方式,能夠自動提取圖像特征,從而在圖像識別和分類任務中表現(xiàn)出色。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?844次閱讀

    卷積神經網絡的基本原理與算法

    卷積神經網絡(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結構的前饋神經網絡(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?1773次閱讀

    RNN模型與傳統(tǒng)神經網絡的區(qū)別

    傳統(tǒng)神經網絡(前饋神經網絡) 2.1 結構 傳統(tǒng)神經網絡,通常指的是前饋神經網絡(Feedforward Neural Networks,
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    LSTM神經網絡結構與工作機制

    結構與工作機制的介紹: 一、LSTM神經網絡結構 LSTM神經網絡結構主要包括以下幾個部分: 記憶單元(Memory Cell) :
    的頭像 發(fā)表于 11-13 10:05 ?1629次閱讀

    關于卷積神經網絡,這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號中的復雜模式就是其應用之一。 1、什么是卷積神經網絡神經網絡是一種由神經元組成的系統(tǒng)或結構
    發(fā)表于 10-24 13:56

    UNet模型屬于哪種神經網絡

    U-Net模型屬于卷積神經網絡(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學計算機科學系的研究人員在2015年提出,專為生物醫(yī)學圖像
    的頭像 發(fā)表于 07-24 10:59 ?5537次閱讀