99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么ChatGPT模型大了就有上下文聯(lián)系能力?

深度學(xué)習(xí)自然語言處理 ? 來源:深度學(xué)習(xí)自然語言處理 ? 2023-04-27 09:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

關(guān)于這點(diǎn),在一篇采訪OpenAI 總裁Greg Brockman 的報(bào)道中提到了:

“Q:ChatGPT是如何產(chǎn)生的?GPT模型當(dāng)初發(fā)布時(shí)顯得有些違反常識(shí),但卻在某種程度上掀起了最新的AI浪潮,這與你們當(dāng)初構(gòu)建這些技術(shù)時(shí)的預(yù)期是否一致?

A:ChatGPT、GPT-3、DALL·E 2這些模型看似一夜成名,但其實(shí)構(gòu)建這些模型耗費(fèi)了整整五年時(shí)間,飽含多年的心血。GPT模型的構(gòu)建要從2017年發(fā)布的情感神經(jīng)元論文(Neural Sentiment Neuron: A novel Neural Architecture for Aspect-based Sentiment Analysis)說起,這篇論文的思想很新穎,不過很多人可能已經(jīng)忘了。

....“

于是好奇去查了這篇文章,很遺憾,并不是上面提到的這篇文章,而是官網(wǎng)Learning to Generate Reviews and Discovering Sentiment這篇文章。這篇文章的作者很激動(dòng)、誠懇甚至有點(diǎn)卑微的表達(dá)了它的意外發(fā)現(xiàn),那就是單純訓(xùn)練LSTM 模型的去預(yù)測(cè)下一個(gè)單詞,模型中的某個(gè)神經(jīng)元意外對(duì)應(yīng)著情感狀態(tài),用Greg Brockman的原話說就是:

“我們發(fā)現(xiàn)LSTM模型中的單個(gè)神經(jīng)元有助于開發(fā)出SOTA情感分析分類器(sentiment analysis classifier),可以告知你文本情感(正面評(píng)價(jià)或負(fù)面評(píng)價(jià)),這一發(fā)現(xiàn)聽起來平平無奇,但我們非常清楚地知道,這是一個(gè)超越語法并轉(zhuǎn)向語義的時(shí)刻?!?/p>

關(guān)于為何會(huì)出現(xiàn)這種涌現(xiàn)行為,文章的作者提出了他的思路:

“情緒作為條件特征可能對(duì)語言建模具有很強(qiáng)的預(yù)測(cè)能力。(It is possible that sentiment as a conditioning feature has strong predictive capability for language modelling.)“

這個(gè)思路是典型的達(dá)爾文進(jìn)化思維:

即模型本身有生成各種能力的潛力,當(dāng)某項(xiàng)能力有利于模型完成任務(wù)(完不成的參數(shù)被調(diào)整,等駕馭被任務(wù)淘汰),這項(xiàng)能力就能自發(fā)進(jìn)化出來。

神經(jīng)網(wǎng)絡(luò)在訓(xùn)練的時(shí)候,采用的隨機(jī)梯度下降算法,一定程度上等效于物種的基因突變,本質(zhì)是有一定方向的隨機(jī)摸索,在強(qiáng)大的生存壓力下,錯(cuò)誤的摸索被淘汰,久而久之,積累越來越多的正確摸索,某些高層的功能就這么涌現(xiàn)出來了。

這種思路是不同于還原論的,ChatGPT 的出現(xiàn)讓很多這個(gè)行業(yè)的老人困惑:“似乎原理上沒有任何創(chuàng)新,為何能力出現(xiàn)巨大提升呢?”“涌現(xiàn)這個(gè)詞本身就是個(gè)模棱兩可的詞,我并不知道具體的細(xì)節(jié),那就是偽科學(xué)?!薄癈hatGPT 具備的推理能力不過是另一種歸納,永遠(yuǎn)無法替代演繹”。

還原論的思想講究從底層到高層的逐漸構(gòu)建,每行代碼都有清晰的含義,這樣寫出來的系統(tǒng)才叫系統(tǒng),但進(jìn)化論的思想完全不同,進(jìn)化論需要構(gòu)建一個(gè)萬能生成器,然后建立一個(gè)淘汰機(jī)制,對(duì)萬能生成器生成的各種可能進(jìn)行篩選淘汰,這樣進(jìn)化出來的系統(tǒng),就能很好的完成任務(wù),至于里面形成的微結(jié)構(gòu),那并不是重點(diǎn),甚至都無法用簡(jiǎn)單的語言描述,因?yàn)楸旧砭褪侨止餐鹱饔玫摹?/p>

所謂上下文推理,不過就是給定前文,準(zhǔn)確給出后文的能力,這其實(shí)就是語言模型預(yù)訓(xùn)練時(shí)候就在做的事情,為了能做到這點(diǎn),在訓(xùn)練的過程中,各種有助于提高預(yù)測(cè)能力的高層能力,都會(huì)自然而然的進(jìn)化出來,所謂的高層能力,不過是一種函數(shù),而神經(jīng)網(wǎng)絡(luò)本身可以擬合一切函數(shù),同時(shí)隨機(jī)梯度下降,又讓神經(jīng)網(wǎng)絡(luò)具備了參數(shù)自動(dòng)填充的能力。當(dāng)然,進(jìn)化的過程中,神經(jīng)網(wǎng)絡(luò)總會(huì)嘗試找到更好的解法,比如死記硬背,但這些解法往往跟我們預(yù)期的解法不一致,這時(shí)候任務(wù)的合理構(gòu)建就很重要了,需要巧妙的設(shè)計(jì),讓我們預(yù)期的解法是神經(jīng)網(wǎng)絡(luò)進(jìn)化的唯一解。

其實(shí)換個(gè)角度想,人為什么有推理能力?人的一切能力也是進(jìn)化而來的,人的各種生存壓力,配合基因的隨機(jī)突變和大自然的定向篩選,導(dǎo)致推理等能力的出現(xiàn),換句話說,當(dāng)推理能力的出現(xiàn)有助于人這個(gè)群體生存的時(shí)候,這個(gè)能力就會(huì)出現(xiàn),跟GPT 涌現(xiàn)的各種能力的原理一樣。

不要總拿著還原論思想去看待世界,幾百年前,就出現(xiàn)了進(jìn)化論思想,因?yàn)檫M(jìn)化論思想沒有寫進(jìn)義務(wù)教育的教材,導(dǎo)致太多人沒有深刻理解這個(gè)工具。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103618
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3521

    瀏覽量

    50423
  • ChatGPT
    +關(guān)注

    關(guān)注

    29

    文章

    1590

    瀏覽量

    9101

原文標(biāo)題:為什么ChatGPT模型大了就有上下文聯(lián)系能力?

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    HarmonyOS AI輔助編程工具(CodeGenie)代碼續(xù)寫

    利用AI大模型分析并理解開發(fā)者在代碼編輯區(qū)的上下文信息或自然語言描述信息,智能生成符合上下文的ArkTS或C++代碼片段。 一、使用約束 建議在編輯區(qū)內(nèi)已有較豐富上下文,能夠使
    發(fā)表于 07-15 16:15

    鴻蒙中Stage模型與FA模型詳解

    模型中, featureAbility 是舊版FA模型(Feature Ability)的用法 ,Stage模型已采用全新的應(yīng)用架構(gòu),推薦使用 組件化的上下文獲取方式 ,而非依賴
    的頭像 發(fā)表于 07-07 11:50 ?176次閱讀

    鴻蒙NEXT-API19獲取上下文,在class中和ability中獲取上下文,API遷移示例-解決無法在EntryAbility中無法使用最新版

    摘要:隨著鴻蒙系統(tǒng)API升級(jí)至16版本(modelVersion5.1.1),多項(xiàng)API已廢棄。獲取上下文需使用UIContext,具體方法包括:在組件中使用getUIContext(),在類中使
    的頭像 發(fā)表于 07-01 10:57 ?209次閱讀
    鴻蒙NEXT-API19獲取<b class='flag-5'>上下文</b>,在class中和ability中獲取<b class='flag-5'>上下文</b>,API遷移示例-解決無法在EntryAbility中無法使用最新版

    S32K在AUTOSAR中使用CAT1 ISR,是否需要執(zhí)行上下文切換?

    如果我們?cè)?AUTOSAR 中使用 CAT1 ISR,是否需要執(zhí)行上下文切換?另外,是否需要返回指令才能跳回到作系統(tǒng)?您有沒有帶有 CAT1 ISR 的 S32K3x4 微控制器的示例?
    發(fā)表于 03-27 07:34

    DeepSeek推出NSA機(jī)制,加速長(zhǎng)上下文訓(xùn)練與推理

    的特性,專為超快速的長(zhǎng)上下文訓(xùn)練和推理而設(shè)計(jì)。 NSA通過針對(duì)現(xiàn)代硬件的優(yōu)化設(shè)計(jì),顯著加快了推理速度,并大幅度降低了預(yù)訓(xùn)練成本,同時(shí)保持卓越的性能表現(xiàn)。這一機(jī)制在確保效率的同時(shí),并未犧牲模型的準(zhǔn)確性或功能。 在廣泛的基準(zhǔn)測(cè)試、
    的頭像 發(fā)表于 02-19 14:01 ?640次閱讀

    OpenAI更新macOS ChatGPT應(yīng)用,推出“代理”功能實(shí)現(xiàn)無縫集成

    ”功能的推出。通過這一功能,ChatGPT能夠作為用戶的得力助手,在支持的第三方應(yīng)用程序中讀取屏幕信息,并根據(jù)上下文提供精準(zhǔn)的幫助和建議。無論是編寫代碼、記錄筆記還是處理文檔,用戶都能享受到ChatGPT帶來的智能化輔助,實(shí)現(xiàn)工
    的頭像 發(fā)表于 01-02 10:49 ?674次閱讀

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    的應(yīng)用。MAML算法通過二階優(yōu)化找到對(duì)任務(wù)變化敏感的模型參數(shù),實(shí)現(xiàn)快速適應(yīng)。上下文學(xué)習(xí)則引入了注意力機(jī)制,使模型能夠根據(jù)當(dāng)前場(chǎng)景動(dòng)態(tài)調(diào)整行為策略。在預(yù)訓(xùn)練-微調(diào)范式中,我們要注意任務(wù)
    發(fā)表于 12-24 15:03

    一文解析Anthropic MCP協(xié)議

    提供上下文ChatGPT 升級(jí)為實(shí)時(shí)協(xié)作助手),沒想到 Claude 這么快就帶來了一個(gè) LLM 協(xié)議標(biāo)準(zhǔn),直接將 AI 能力拉滿(現(xiàn)在下結(jié)論為時(shí)尚早)。不過當(dāng)我看完整個(gè)協(xié)議以及簡(jiǎn)單上手體驗(yàn)后,我想說
    的頭像 發(fā)表于 12-04 11:09 ?5189次閱讀
    一文解析Anthropic MCP協(xié)議

    阿里通義千問發(fā)布Qwen2.5-Turbo開源AI模型

    體驗(yàn)。 Qwen2.5-Turbo在上下文長(zhǎng)度方面實(shí)現(xiàn)重大突破,能夠擴(kuò)展至100萬個(gè)tokens,這相當(dāng)于大約100萬英文單詞或150萬中文字符的容量。如此龐大的上下文長(zhǎng)度,足以包含10部完整的小說、150小時(shí)的演講稿或300
    的頭像 發(fā)表于 11-19 18:07 ?1238次閱讀

    解鎖 GPT-4o!2024 ChatGPT Plus 代升級(jí)全攻略(附國內(nèi)支付方法)

    更快的文本生成速度和更精準(zhǔn)的圖像理解。GPT-4o 的消息額度是免費(fèi)版的五倍,上下文窗口也更大。 高級(jí)語音模式 (AVM): 支持 50 多種語言,可理解語速等非語言線索
    的頭像 發(fā)表于 10-29 18:17 ?2499次閱讀

    Llama 3 在自然語言處理中的優(yōu)勢(shì)

    領(lǐng)域的最新進(jìn)展。 1. 高度的上下文理解能力 Llama 3的一個(gè)顯著優(yōu)勢(shì)是其對(duì)上下文的深刻理解。傳統(tǒng)的NLP模型往往在處理復(fù)雜的語言結(jié)構(gòu)和上下文依賴性時(shí)遇到困難。Llama 3通過使
    的頭像 發(fā)表于 10-27 14:22 ?730次閱讀

    Llama 3 語言模型應(yīng)用

    在人工智能領(lǐng)域,語言模型的發(fā)展一直是研究的熱點(diǎn)。隨著技術(shù)的不斷進(jìn)步,我們見證從簡(jiǎn)單的關(guān)鍵詞匹配到復(fù)雜的上下文理解的轉(zhuǎn)變。 一、Llama 3 語言模型的核心功能
    的頭像 發(fā)表于 10-27 14:15 ?740次閱讀

    如何評(píng)估 ChatGPT 輸出內(nèi)容的準(zhǔn)確性

    評(píng)估 ChatGPT 輸出內(nèi)容的準(zhǔn)確性是一個(gè)復(fù)雜的過程,因?yàn)樗婕暗蕉鄠€(gè)因素,包括但不限于數(shù)據(jù)的質(zhì)量和多樣性、模型的訓(xùn)練、上下文的理解、以及輸出內(nèi)容的邏輯一致性。以下是一些評(píng)估 ChatGPT
    的頭像 發(fā)表于 10-25 17:48 ?1163次閱讀

    SystemView上下文統(tǒng)計(jì)窗口識(shí)別阻塞原因

    SystemView工具可以記錄嵌入式系統(tǒng)的運(yùn)行時(shí)行為,實(shí)現(xiàn)可視化的深入分析。在新發(fā)布的v3.54版本中,增加了一項(xiàng)新功能:上下文統(tǒng)計(jì)窗口,提供對(duì)任務(wù)運(yùn)行時(shí)統(tǒng)計(jì)信息的深入分析,使用戶能夠徹底檢查每個(gè)任務(wù),幫助開發(fā)人員識(shí)別阻塞原因。
    的頭像 發(fā)表于 08-20 11:31 ?702次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    能夠關(guān)注到輸入文本中的重要部分,從而提高預(yù)測(cè)的準(zhǔn)確性和效率。這種機(jī)制允許模型在處理文本時(shí)同時(shí)考慮多個(gè)位置的信息,并根據(jù)重要性進(jìn)行加權(quán)處理。 一些關(guān)鍵技術(shù) 1. 上下文理解 大語言模型能夠同時(shí)考慮句子前后
    發(fā)表于 08-02 11:03