點擊藍字關(guān)注我們
文章來源:Power Electronics News
在相當長的一段時間內(nèi),硅一直是世界各地電力電子轉(zhuǎn)換器所用器件的首選半導體材料,但 1891 年碳化硅 (SiC) 的出現(xiàn)帶來了一種替代材料,它能減輕對硅的依賴。SiC 是寬禁帶 (WBG) 半導體:將電子激發(fā)到導帶所需的能量更高,并且這種寬禁帶具備優(yōu)于標準硅基器件的多種優(yōu)勢。
安森美(onsemi)的 1700-V EliteSiC MOSFET (NTH4L028N170M1) 提供更高擊穿電壓 (BV) SiC 方案,滿足大功率工業(yè)應(yīng)用的需求。使用兩個 1700-V 雪崩額定值的 EliteSiC 肖特基二極管(NDSH25170A、NDSH10170A),設(shè)計人員便可實現(xiàn)高溫高壓下的穩(wěn)定運行,同時提供 SiC 帶來的高效率。

Ajay Reddy Sattu
安森美工業(yè)電源方案產(chǎn)品營銷總監(jiān)
據(jù) Sattu 說,最先是在能源基礎(chǔ)設(shè)施中,雙向供電將大規(guī)模儲能系統(tǒng)與商業(yè)或電站規(guī)模的太陽能逆變器連接起來。
從表 1 對混合 IGBT 方案和全 SiC 方案的比較可以明顯看出,在相同條件下,全 SiC 方案的總損耗低得多,因此效率更高。Sattu 表示:“采用全 SiC 模塊時,開關(guān)頻率可以提高到 40 kHz 或更高,從而使升壓電感可低至 200 μH,成本和重量得以降低。”
圖1. 太陽能電池板應(yīng)用
表1. 混合 IGBT 方案和全 SiC 方案的比較
第二個重點關(guān)注領(lǐng)域是電動汽車充電器 (EVC)。據(jù) Sattu 說,根據(jù)電壓輸入和功率水平,當今的電動汽車充電器主要分為三級。
圖2. 電動汽車充電站框圖
隨著越來越多的設(shè)計人員正在或已經(jīng)將 SiC 用于其設(shè)計中,對于 SiC 的質(zhì)量、可靠性和供應(yīng)情況是否長期有保障出現(xiàn)了一些擔憂。隨著 SiC MOSFET 的商用化和發(fā)展,柵極氧化層的可靠性也有了顯著提高。
柵極氧化層和保護其免受高電場影響的方法仍然是器件開發(fā)的一個關(guān)鍵焦點領(lǐng)域。改進篩選測試以剔除隨時間推移可能有參數(shù)漂移的芯片也很重要。
在加工過程中,柵極氧化層缺陷密度必須保持在最低水平,以使 SiC MOSFET 像 Si MOSFET 一樣可靠。還必須開發(fā)創(chuàng)新的篩選方法,例如在最終電氣測試中發(fā)現(xiàn)并消除可能的較弱器件。
Sattu 說:“安森美從兩個方面考慮柵極氧化層的可靠性:本征和外部。首先,我們的EliteSiC 工藝流程經(jīng)過了強化,在各個工序中加入了篩選措施,以篩選出由工藝可能引起的失效模式。其次,我們還實施晶圓級或封裝級老化方法來消除早期失效。此外,作為本征可靠性研究的一部分,我們根據(jù)時間相關(guān)的介質(zhì)擊穿特性分析來評估 EliteSiC MOSFET 技術(shù),確保器件在應(yīng)用曲線所要求的范圍之外也能正常運行。顯然,氧化層厚度和溝道遷移率之間的權(quán)衡取舍限制了所使用的氧化層厚度和應(yīng)用中施加的 VGS [15 V 或 18 V],影響了長期可靠性?!?/span>
圖 3 比較了不同 VGS下的壽命性能,它比實際應(yīng)用所采用的電壓要高得多。據(jù) Sattu 說,很明顯,我們采用遠超工業(yè)和汽車行業(yè)要求的測試條件進行了測試,并成功得到了不同工況下所對應(yīng)的失效等級。
圖3. VGS 與壽命性能的關(guān)系
VGS 遠高于實際應(yīng)用中使用的電壓
寬禁帶半導體潛力很大,但設(shè)計人員需要意識到使用這些材料帶來的困難。以更高的開關(guān)頻率和更大的功率密度工作,可以實現(xiàn)無源元件(電感和電容)的尺寸減小,創(chuàng)建更輕更小的系統(tǒng)。然而,預(yù)測這些較小的無源元件在較高頻率下工作時的行為可能具有挑戰(zhàn)性,并且可能會出現(xiàn)熱量管理問題。寬禁帶半導體的工作溫度比硅基器件支持的溫度高,因此需要精心設(shè)計。在整個設(shè)計階段都要考慮更大的熱應(yīng)力,這可能會對系統(tǒng)的可靠性產(chǎn)生不利影響。再現(xiàn)或仿真讓電子器件承受極端熱應(yīng)力的惡劣工作環(huán)境,是電子設(shè)計人員面臨的主要問題之一。
熱管理的目標是有效地從芯片和封裝中散熱。據(jù) Sattu 說,有以下幾種途徑。
圖4. 熱性能
隨著太陽能系統(tǒng)母線電壓達到 1100 V 至 1500 V,可再生能源應(yīng)用正穩(wěn)步推進到更高的電壓??蛻粢髶舸╇妷焊叩?MOSFET 來支持這種改進。新型 1700-V EliteSiC MOSFET 的最大 VGS 范圍為 -15 V/25 V,適合柵極電壓上升至 -10 V 的快速開關(guān)應(yīng)用,可提高系統(tǒng)的可靠性。
除了太陽能和電動汽車充電器之外,基于 SiC 的器件在其他幾個應(yīng)用領(lǐng)域也有顯著優(yōu)勢,尤其是額定電壓 650 V 的器件。
圖5. 數(shù)據(jù)中心設(shè)計
對于電動汽車和可再生能源系統(tǒng),電源管理方案必須能夠改善性能、節(jié)約成本并縮短開發(fā)時間。SiC 堆疊方法能夠提高性能和降低價格,目前對于電動汽車、商業(yè)運輸、可再生能源和存儲系統(tǒng)的設(shè)計人員非常有利。
SiC 器件廣泛應(yīng)用于汽車行業(yè),尤其是電動汽車和插電式混合動力汽車的制造。下一代電動汽車的動力系統(tǒng)必須能夠提升車輛的效率(從而增加行駛里程)和電池充電速度。
SiC 逆變器被證明是解決這些問題的關(guān)鍵器件?;?SiC 的逆變器可以實現(xiàn)高達 99% 的效率,而標準逆變器將能量從電池傳輸?shù)诫姍C的效率為 97% 至 98%。值得注意的是,小數(shù)點后一位或兩位的效率提升能對整車產(chǎn)生巨大的積極影響。
由于能源需求的增加和可再生能源使用的擴大,微電網(wǎng)在減少溫室氣體排放和對化石燃料的依賴方面變得更加重要。然而,微電網(wǎng)系統(tǒng)不能采用硅基固態(tài)逆變器和開關(guān),因為它們體積太大且效率低下。SiC 等寬禁帶半導體具有更高的擊穿電壓和開關(guān)頻率,是開發(fā)高效可靠微電網(wǎng)的關(guān)鍵因素。
由于來自非線性負載的非正弦電流,連接到網(wǎng)絡(luò)的大量電子設(shè)備會在能量分配系統(tǒng)中產(chǎn)生大量諧波。采用合適的有源或無源濾波器是消除能量分配系統(tǒng)中的諧波失真的經(jīng)典方法之一。通過將諧波補償功能直接集成到轉(zhuǎn)換器中,無需特殊濾波器,基于 SiC 的功率器件能夠在非常高的開關(guān)電壓和頻率下工作,從而減小設(shè)計的尺寸、復雜度和成本。
雖然 SiC 的特性已經(jīng)為人所知有一段時間了,但第一批 SiC 功率器件是最近才生產(chǎn)出來的,始于 21 世紀初,使用的是 100 mm 晶圓。幾年前,大多數(shù)制造商轉(zhuǎn)向 150 mm 晶圓,最近又轉(zhuǎn)向大規(guī)模生產(chǎn) 200 mm(8 英寸)晶圓。
由于面臨保持相同質(zhì)量和良率的挑戰(zhàn),SiC 晶圓從 4 英寸到 6 英寸的轉(zhuǎn)變并不順利。材料的特性是 SiC 制造中最大的問題。由于硬度極高(幾乎接近鉆石),SiC 的晶體形成和加工需要更長的時間、更多的能量和更高的溫度。此外,最常見的晶體結(jié)構(gòu) (4H-SiC) 具有高透明度和高折射率,因此難以分析材料有無可能影響外延生長或最終元件良率的表面缺陷。
結(jié)晶堆垛層錯、表面顆粒、微管、凹坑、劃痕和污漬是制造 SiC 基板時可能出現(xiàn)的主要缺陷。這些變數(shù)可能對 SiC 器件的性能產(chǎn)生負面影響;相比于 100 mm 晶圓,它們在 150 mm 晶圓上出現(xiàn)的頻率更高。SiC 是世界上第三硬的復合材料,而且非常易碎,因此其制造存在周期時間、成本和切割性能方面的困難。向 200-mm SiC 晶圓的轉(zhuǎn)變將使汽車和工業(yè)市場受益匪淺,因為它能加快這些市場的系統(tǒng)和產(chǎn)品的電氣化進程。隨著產(chǎn)量的提高,這對促進規(guī)模經(jīng)濟至關(guān)重要。
點個星標,茫茫人海也能一眼看到我

原文標題:深度洞察 | 碳化硅如何革新電氣化趨勢
文章出處:【微信公眾號:安森美】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
-
安森美
+關(guān)注
關(guān)注
32文章
1797瀏覽量
93187
原文標題:深度洞察 | 碳化硅如何革新電氣化趨勢
文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
碳化硅功率器件的種類和優(yōu)勢
國內(nèi)碳化硅功率器件設(shè)計公司的倒閉潮是市場集中化的必然結(jié)果

SiC碳化硅MOSFET功率器件雙脈沖測試方法介紹

碳化硅薄膜沉積技術(shù)介紹

碳化硅在半導體中的作用
產(chǎn)SiC碳化硅MOSFET功率模塊在工商業(yè)儲能變流器PCS中的應(yīng)用
什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?
碳化硅的未來發(fā)展趨勢

低功耗碳化硅 MOSFET 的發(fā)展 | 氮化硼高導熱絕緣片

碳化硅功率器件的工作原理和應(yīng)用

碳化硅功率器件的優(yōu)勢和應(yīng)用領(lǐng)域

碳化硅功率器件的原理簡述

碳化硅功率器件的優(yōu)點和應(yīng)用

評論