99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

高度復(fù)雜的電池電化學(xué)以設(shè)計(jì)高性能電池的主要障礙分析

清新電源 ? 來源:清新電源 ? 作者:清新電源 ? 2022-12-14 10:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

一、背景介紹

電解質(zhì)分解在電極表面形成固體電解質(zhì)界面(SEI)。然而,目前幾乎沒有鋰金屬負(fù)極上SEI形成的原子細(xì)節(jié),這是充分理解高度復(fù)雜的電池電化學(xué)以設(shè)計(jì)高性能電池的主要障礙。

二、正文部分

01 成果簡(jiǎn)介

加州理工學(xué)院William A. Goddard和Boris V. Merinov等人提供了使用反應(yīng)性分子動(dòng)力學(xué)模擬在Li金屬負(fù)極和離子液體電解質(zhì)之間的界面處SEI形成的實(shí)際原子模型(39 000個(gè)原子)。作者發(fā)現(xiàn)約10 nm厚的SEI由鋰金屬負(fù)極附近的致密有序無機(jī)層和電解質(zhì)附近的多孔有機(jī)層組成。這些結(jié)果為更深入地理解復(fù)雜的SEI提供了新的見解,這將有助于開發(fā)新一代高效電池。該研究以題目為“Characterization of the Solid Electrolyte Interphase at the Li Metal–Ionic Liquid Interface”的論文發(fā)表在材料領(lǐng)域國(guó)際頂級(jí)期刊《Adv.Energy Mater.》。

02 研究亮點(diǎn)

該工作使用ReaxFF MD模擬了鋰金屬負(fù)極和電解質(zhì)之間界面處SEI層形成的原子細(xì)節(jié)。

03 圖文導(dǎo)讀

【圖1】300 K時(shí)ReaxFF MD模擬的SEI層的形成。初始系統(tǒng)(頂部)包含一個(gè)尺寸為4.5 × 4.5 × 10 nm的鋰金屬電極和一個(gè)尺寸為4.5 × 4.5 × 19 nm的[TFSI][BMIM]離子液體電解質(zhì)(其中約10%的BMIM被鋰離子取代),總共有39 000個(gè)原子。在1 ns ReaxFF MD模擬期間,在Li負(fù)極和IL電解質(zhì)之間的界面處形成了約10 nm厚的SEI層。為了清楚起見,這里用透明的顏色顯示離子液體分子。放大的圖區(qū)域顯示了Li負(fù)極、IL電解質(zhì)以及SEI的無機(jī)和有機(jī)層的代表性結(jié)構(gòu)。下圖顯示了在模擬的不同時(shí)間間隔后,Li電荷(上圖)和密度(下圖)沿x軸的分布,其中黑色、紅色和藍(lán)色箭頭分別表示總SEI、無機(jī)和有機(jī)層。Li(ρ)在9至12 nm范圍內(nèi)的輕微增加與該區(qū)域LiF和Li2O凝聚體的形成有關(guān)(見圖3B)。這里,系統(tǒng)溫度首先從10逐漸增加到300 K持續(xù)60 ps,然后模擬在300 K持續(xù)1 ns。

為了描述在實(shí)際距離和時(shí)間尺度下SEI的形成,作者制備了由約10 nm厚的Li負(fù)極和約19 nm厚的[TFSI][BMIM] IL電解質(zhì)組成的系統(tǒng),其周期性橫向尺寸為4.5 nm × 4.5 nm。這里大約10%的BMIM被鋰離子取代(圖1)。每端的兩層Li和IL分子被固定,以迫使反應(yīng)僅在一個(gè)界面發(fā)生。由于鋰金屬的高反應(yīng)性,界面上的離子液體開始與鋰快速反應(yīng),引發(fā)SEI的形成。在模擬過程中,從負(fù)極到電解質(zhì)有大量的Li穿過界面。這種Li遷移導(dǎo)致SEI層內(nèi)的Li電荷和濃度出現(xiàn)梯度(圖1)。Li上的電荷從負(fù)極(+0.05e)通過SEI到電解質(zhì)(+0.86e)均勻變化,顯示了SEI上從金屬到離子特征的轉(zhuǎn)變。隨著SEI層的生長(zhǎng),在界面反應(yīng)期間,Li負(fù)極中的電子轉(zhuǎn)移到IL電解質(zhì)中。圖1顯示,在模擬結(jié)束時(shí),Li電荷沿著x軸在約5 nm至約15 nm的范圍內(nèi)線性增長(zhǎng)。

Li從負(fù)極向電解質(zhì)的遷移和TFSI分解產(chǎn)物以相反的方向(從電解質(zhì)向負(fù)極)在SEI中產(chǎn)生兩個(gè)不同的相:富含碳和氟的無機(jī)有序內(nèi)層(≈2.5nm),在鋰電極附近密度較高,作者稱之為致密層或無機(jī)層;富含氧和氟的有機(jī)多孔外層(≈7.5nm),在電解質(zhì)界面附近密度較低,作者稱之為多孔或有機(jī)層。

事實(shí)上,雖然對(duì)原子細(xì)節(jié)知之甚少,但這種概念已經(jīng)從實(shí)驗(yàn)分析中預(yù)見到了。作者發(fā)現(xiàn)大約2.5 nm厚的無機(jī)層靠近電極形成。它由鋰原子構(gòu)成,并保持結(jié)晶度,同時(shí)結(jié)合完全分解的TFSI陰離子的C和F(圖1)。此外,約7.5 nm厚的有機(jī)層靠近電解質(zhì)形成,由完全和部分分解的TFSI陰離子以及大部分未反應(yīng)的BMIM陽(yáng)離子的產(chǎn)物組成。

【圖2】離子液體電解質(zhì)在300 K下的分解。A) TFSI和B) BMIM的分解分子比率是時(shí)間的函數(shù)。C) TFSI(紅色)和D) BMIM(藍(lán)色)分子(及其分解產(chǎn)物)在模擬的不同時(shí)間間隔后的動(dòng)態(tài)行為。底部的圖分別用虛線(總)和實(shí)線(未分解的成分)顯示原子密度。

如上所述,界面處的離子液體電解質(zhì)的TFSI(陰離子)組分通過與鋰金屬負(fù)極反應(yīng)而容易分解,其分解產(chǎn)物主導(dǎo)了SEI層的形成。相反,離子液體的陽(yáng)離子在與鋰的相互作用中表現(xiàn)非常不同,幾乎不分解。與金屬鋰接觸的TFSI陰離子開始快速分解,在模擬過程中分解率逐漸增加。ReaxFF MD模擬1 ns后,約30%的總TFSI分子已經(jīng)分解(圖2A)。相比之下,BMIM陽(yáng)離子要穩(wěn)定得多,在1 ns的模擬過程中,只有大約2%的BMIM分子部分分解(圖2B)。此外,作者發(fā)現(xiàn)靠近Li負(fù)極表面的TFSI陰離子完全分解,而遠(yuǎn)離負(fù)極表面的陰離子僅部分分解或根本不分解(圖2C)。與TFSI陰離子相比,BMIM陽(yáng)離子對(duì)Li金屬更穩(wěn)定,在1 ns模擬中僅顯示部分分解(≈2%)。未分解的BMIM陽(yáng)離子遷移通過SEI的有機(jī)部分,伴隨SEI的形成(圖2D)。

【圖3】a)具有兩個(gè)不同相的SEI層:無機(jī)相(2.5nm厚)和有機(jī)相(7.5nm厚)。為清楚起見,TFSI(上圖)和BMIM(下圖)及其分解產(chǎn)物分開顯示。b)完全分解成原子的TFSI中每種元素的相對(duì)原子密度和分布(F:紫色,C:灰色,N:藍(lán)色,O:紅色,S:黃色,H:白色)。顯示了按比例降低的Li密度用于比較(青色)。C)分別為L(zhǎng)i-Li(上)、C-Li(中)和F-Li(下)對(duì)繪制的徑向分布函數(shù)(RDF)圖,其中計(jì)算了(A)底部箭頭所示系統(tǒng)各層的RDF。

作者的模擬產(chǎn)生了以下SEI的多層結(jié)構(gòu): 約2.5 nm厚的致密無機(jī)層通過將霧化的TFSI產(chǎn)物結(jié)合到鋰負(fù)極中而形成(圖3A)。這種無機(jī)層清楚地顯示出晶體特征,主要包括C和F原子(也有少量的O和S原子)(圖3B)。徑向分布函數(shù)(RDF)圖根據(jù)位置顯示不同的結(jié)構(gòu)特性。Li–Li對(duì)的RDF清楚地顯示了無機(jī)層的結(jié)晶度(圖3C,頂部)。對(duì)于鋰負(fù)極和無機(jī)層,觀察到幾乎相同的峰和強(qiáng)度,而有機(jī)層具有顯著不同的特性。作者將電解質(zhì)的離散和不同形狀的峰歸因于電解質(zhì)中低濃度的鋰離子。對(duì)于SEI有機(jī)層,在與無機(jī)層相同的位置觀察到第一個(gè)峰,但是強(qiáng)度明顯較低。無機(jī)層中C-Li和F-Li對(duì)的RDF圖顯示第一個(gè)峰位于2.2和2.0,分別對(duì)應(yīng)于Li2C2和LiF中的C-Li和F-Li距離。這表明在無機(jī)SEI層中形成了Li2C2和LiF(圖3C,中間和底部),這也在實(shí)驗(yàn)中觀察到。

【圖4】400 K下SEI層的形成。A)400K下1 ns ReaxFF MD模擬后的快照(上圖)。大約15nm厚的SEI層(2-17nm)形成在鋰負(fù)極和離子液體電解質(zhì)之間的界面上,為了清晰起見,離子液體分子以透明顏色顯示(鋰:青色、氟:紫色、碳:灰色、氮:藍(lán)色、氧:紅色、硫:黃色和氫:白色)。底部曲線表示Li密度沿x軸的分布與模擬時(shí)間的關(guān)系。分解的B) TFSI和C) BMIM分子的比率。d)有機(jī)層中半徑約為1 nm的結(jié)晶LiF納米顆粒。

為了研究更高的溫度如何影響SEI層的形成,作者在400 K時(shí)進(jìn)行了ReaxFF MD模擬。這些模擬得到的結(jié)果在性質(zhì)上類似于300 K時(shí)的結(jié)果,但是,更高的溫度加速了Li負(fù)極和IL電解質(zhì)之間的通量,導(dǎo)致厚度約為15 nm的SEI層擴(kuò)展(從2到17 nm)(圖4A)。這種熱誘導(dǎo)的更厚的SEI層定性地與報(bào)道的實(shí)驗(yàn)結(jié)果一致。分解的TFSI分子的比例從300 K時(shí)的約30%增加到400 K時(shí)的約40 %, BMIM分子的部分分解從300 K時(shí)的約2%增加到400 K時(shí)的約10%(圖4B,C)。此外,在400 K下SEI中Li含量的增加使得能夠在有機(jī)層中形成結(jié)晶LiF納米團(tuán)簇(圖4D)。事實(shí)上,由于常見電解質(zhì)鹽中普遍存在氟物種,已知LiF甚至在室溫下也存在于大多數(shù)SEI中。因此,在作者的模擬中觀察到的LiF納米結(jié)構(gòu)捕獲了在SEI中由高溫加速的LiF納米團(tuán)簇的形成。SEI層中的這種LiF晶相可能在進(jìn)一步減少Li損失中起作用,從而實(shí)現(xiàn)庫(kù)侖效率的提高。

04 總結(jié)和展望

作者使用ReaxFF MD模擬在原子水平上研究了Li金屬和[TFSI][BMIM] IL電解質(zhì)之間界面的SEI形成過程。這些結(jié)果為更好地理解復(fù)雜SEI結(jié)構(gòu)和組成提供了更深入的見解,這將有助于開發(fā)新一代高效LMBs。 審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電化學(xué)
    +關(guān)注

    關(guān)注

    1

    文章

    331

    瀏覽量

    20985
  • 電極
    +關(guān)注

    關(guān)注

    5

    文章

    843

    瀏覽量

    27882
  • 電解質(zhì)
    +關(guān)注

    關(guān)注

    6

    文章

    821

    瀏覽量

    20789
  • 電池
    +關(guān)注

    關(guān)注

    84

    文章

    11081

    瀏覽量

    135090

原文標(biāo)題:AEM:如何理解高度復(fù)雜的SEI?

文章出處:【微信號(hào):清新電源,微信公眾號(hào):清新電源】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    艾德克斯燃料電池電化學(xué)阻抗譜測(cè)試解決方案

    隨著全球?qū)沙掷m(xù)能源的關(guān)注,燃料電池技術(shù)在交通運(yùn)輸、固定電源和便攜式設(shè)備等領(lǐng)域的應(yīng)用日益廣泛。為了確保燃料電池性能和壽命,精確的測(cè)試和診斷方法變得尤為重要。在國(guó)際上,研究機(jī)構(gòu)和企業(yè)紛紛投入資源,開發(fā)先進(jìn)的測(cè)試平臺(tái),
    的頭像 發(fā)表于 06-25 14:19 ?401次閱讀
    艾德克斯燃料<b class='flag-5'>電池</b><b class='flag-5'>電化學(xué)</b>阻抗譜測(cè)試解決方案

    【科普】電化學(xué)傳感器使用壽命影響因素

    電化學(xué)傳感器的使用壽命是一個(gè)復(fù)雜高度可變的因素,沒有統(tǒng)一的答案。它可以從幾個(gè)月到幾年不等,甚至更長(zhǎng),主要取決于以下幾個(gè)關(guān)鍵方面:核心影響因素傳感器本身的設(shè)計(jì)和材料:電極材料:貴金屬電
    的頭像 發(fā)表于 06-13 12:01 ?173次閱讀
    【科普】<b class='flag-5'>電化學(xué)</b>傳感器使用壽命影響因素

    天合儲(chǔ)能推動(dòng)電化學(xué)儲(chǔ)能行業(yè)高質(zhì)量發(fā)展

    近日,國(guó)家能源局綜合司等部門聯(lián)合發(fā)布《關(guān)于加強(qiáng)電化學(xué)儲(chǔ)能安全管理有關(guān)工作的通知》,從提升電池系統(tǒng)本質(zhì)安全水平、健全標(biāo)準(zhǔn)體系、強(qiáng)化全生命周期安全管理責(zé)任等六個(gè)方面,為儲(chǔ)能行業(yè)劃出安全“底線”,也為行業(yè)高質(zhì)量發(fā)展提供清晰方向。
    的頭像 發(fā)表于 06-05 11:52 ?367次閱讀

    光譜電化學(xué)及其在微流體中的應(yīng)用現(xiàn)狀與挑戰(zhàn)(上)

    本文綜述了光譜電化學(xué)(SEC)技術(shù)的最新進(jìn)展。光譜和電化學(xué)的結(jié)合使SEC能夠?qū)?b class='flag-5'>電化學(xué)反應(yīng)過程中分析物的電子轉(zhuǎn)移動(dòng)力學(xué)和振動(dòng)光譜指紋進(jìn)行詳細(xì)而全面的研究。盡管SEC是一種有前景的技術(shù),但
    的頭像 發(fā)表于 02-14 15:07 ?307次閱讀

    基于LMP91000在電化學(xué)傳感器電極故障檢測(cè)中的應(yīng)用詳解

    傳感器缺失時(shí)輸出(啟用故障檢測(cè)) 3 電極故障檢測(cè)的數(shù)據(jù)分析算法 以上測(cè)試給出了電化學(xué)傳感器的常見電極故障下對(duì)應(yīng)的輸出波形,并對(duì)各自輸出特性進(jìn)行了簡(jiǎn)要分析,以下是一種可供參考數(shù)據(jù)分析
    發(fā)表于 02-11 08:02

    星碩傳感發(fā)布GDD4O2-25%VOL電化學(xué)氧氣傳感器

    近期,星碩傳感成功研發(fā)并推出了GDD4O2-25%VOL電化學(xué)式氧氣傳感器。這款傳感器憑借其卓越的性能和廣泛的適用性,正逐步成為各行各業(yè)安全、健康與效率提升的重要技術(shù)支撐。 GDD4O2-25
    的頭像 發(fā)表于 01-24 13:42 ?668次閱讀

    無陽(yáng)極固態(tài)電池電化學(xué)力學(xué)

    鋰離子電池推動(dòng)了消費(fèi)電子產(chǎn)品的發(fā)展,加速了電動(dòng)汽車的普及。但是目前的鋰離子電池技術(shù)仍難以滿足重型車輛和電動(dòng)飛行器等領(lǐng)域的要求。固態(tài)電池(SSBs)使用固態(tài)電解質(zhì)(SSE)取代液體電解質(zhì),可以使用更安全更高容量的電極(如鋰金屬),
    的頭像 發(fā)表于 01-24 10:44 ?630次閱讀
    無陽(yáng)極固態(tài)<b class='flag-5'>電池</b>的<b class='flag-5'>電化學(xué)</b>力學(xué)

    什么是電化學(xué)微通道反應(yīng)器

    電化學(xué)微通道反應(yīng)器概述 電化學(xué)微通道反應(yīng)器是一種結(jié)合了電化學(xué)技術(shù)和微通道反應(yīng)器優(yōu)點(diǎn)的先進(jìn)化學(xué)反應(yīng)設(shè)備。雖然搜索結(jié)果中沒有直接提到“電化學(xué)微通
    的頭像 發(fā)表于 01-22 14:34 ?466次閱讀

    安森美電化學(xué)傳感與無線傳輸解決方案助力遠(yuǎn)程醫(yī)療

    電化學(xué)傳感技術(shù)與遠(yuǎn)程 醫(yī)療 監(jiān)控提供更好的 患者護(hù)理質(zhì)量 在當(dāng)今先進(jìn)的技術(shù)時(shí)代,電化學(xué)傳感器的普及和重要性正在迅速增長(zhǎng),量化化學(xué)物質(zhì)可提高醫(yī)學(xué)和環(huán)境科學(xué)、工業(yè)材料和食品加工等不同領(lǐng)域的安全性、效率
    發(fā)表于 12-10 19:21 ?799次閱讀
    安森美<b class='flag-5'>電化學(xué)</b>傳感與無線傳輸解決方案助力遠(yuǎn)程醫(yī)療

    電池(包級(jí))測(cè)試系統(tǒng)的技術(shù)原理和應(yīng)用

    原理以及數(shù)據(jù)采集與分析技術(shù)。 電化學(xué)原理: 通過模擬電池的充放電過程,測(cè)試系統(tǒng)可以評(píng)估電池電化學(xué)性能,如
    發(fā)表于 12-09 15:40

    燃料電池測(cè)試負(fù)載的工作原理是什么?

    燃料電池測(cè)試負(fù)載的工作原理主要涉及到對(duì)燃料電池性能的檢測(cè)和評(píng)估。燃料電池是一種將化學(xué)能直接轉(zhuǎn)化為
    發(fā)表于 12-06 16:31

    電化學(xué)氣體傳感器信號(hào)放大調(diào)試經(jīng)驗(yàn)

    非偏壓款:即是傳感器的兩級(jí)參考電壓是一樣 ,VRE1=VRE2=200mV; 常見的電化學(xué)不帶偏壓傳感器有:硫化氫H2S、氨氣NH3、硫化氨(CH3)3N等等。 偏壓ETO款:即是傳感器的兩級(jí)
    發(fā)表于 11-16 11:26

    掃描速率對(duì)各體系的電化學(xué)行為有什么影響

    掃描速率(Scan Rate)是電化學(xué)測(cè)試中一個(gè)重要的參數(shù),它影響著電化學(xué)反應(yīng)的動(dòng)力學(xué)特性和電極過程的控制步驟。在電化學(xué)實(shí)驗(yàn)中,掃描速率決定了電位變化的速度,進(jìn)而影響電極表面的電荷轉(zhuǎn)移速率和物質(zhì)傳遞
    的頭像 發(fā)表于 10-14 14:51 ?3668次閱讀

    KLA納米壓痕儀對(duì)電池材料的測(cè)量

    電池的應(yīng)用極為廣泛,其通常以電化學(xué)反應(yīng)池的形式為各類裝置供電。電池內(nèi)在失效和劣化對(duì)電池性能有重大影響,而其機(jī)制依賴于不同組成材料之間的
    的頭像 發(fā)表于 09-25 10:30 ?926次閱讀
    KLA納米壓痕儀對(duì)<b class='flag-5'>電池</b>材料的測(cè)量

    電化學(xué)感知技術(shù)的新時(shí)代

    圖1智能健康監(jiān)測(cè)和可穿戴設(shè)備是先進(jìn)傳感器平臺(tái)的關(guān)鍵應(yīng)用(來源: Adobe Stock) 在科學(xué)探索的前沿,電化學(xué)感知是一種不可或缺且適應(yīng)性強(qiáng)的工具,影響著各行各業(yè)。從生命科學(xué)、環(huán)境科學(xué)到工業(yè)材料
    發(fā)表于 09-05 11:43 ?1297次閱讀
    <b class='flag-5'>電化學(xué)</b>感知技術(shù)的新時(shí)代