99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

自然語言處理或?qū)⒂瓉硇碌姆妒阶冞w

深度學(xué)習(xí)自然語言處理 ? 來源:李rumor ? 作者:車萬翔 ? 2022-12-08 16:59 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

最近幾天被OpenAI推出的ChatGPT[1]刷屏了,其影響已經(jīng)不僅局限于自然語言處理(NLP)圈,就連投資圈也開始蠢蠢欲動(dòng)了,短短幾天ChatGPT的用戶數(shù)就超過了一百萬。通過眾多網(wǎng)友以及我個(gè)人對(duì)其測試的結(jié)果看,ChatGPT的效果可以用驚艷來形容,具體結(jié)果我在此就不贅述了。不同于GPT-3剛推出時(shí)人們的反應(yīng),對(duì)ChatGPT大家發(fā)出更多的是贊嘆之詞。聊天、問答、寫作、編程等等,樣樣精通。因此也有人驚呼,“通用人工智能(AGI)即將到來”、“Google等傳統(tǒng)搜索引擎即將被取代”,所以也對(duì)傳說中即將發(fā)布的GPT-4更加期待。

從技術(shù)角度講,ChatGPT還是基于大規(guī)模預(yù)訓(xùn)練語言模型(GPT-3.5)強(qiáng)大的語言理解和生成的能力,并通過在人工標(biāo)注和反饋的大規(guī)模數(shù)據(jù)上進(jìn)行學(xué)習(xí),從而讓預(yù)訓(xùn)練語言模型能夠更好地理解人類的問題并給出更好的回復(fù)。這一點(diǎn)上和OpenAI于今年3月份推出的InstructGPT[2]是一致的,即通過引入人工標(biāo)注和反饋,解決了自然語言生成結(jié)果不易評(píng)價(jià)的問題,從而就可以像玩兒游戲一樣,利用強(qiáng)化學(xué)習(xí)技術(shù),通過嘗試生成不同的結(jié)果并對(duì)結(jié)果進(jìn)行評(píng)分,然后鼓勵(lì)評(píng)分高的策略、懲罰評(píng)分低的策略,最終獲得更好的模型。

不過說實(shí)話,我當(dāng)時(shí)并不看好這一技術(shù)路線,因?yàn)檫@仍然需要大量的人工勞動(dòng),本質(zhì)上還是一種“人工”智能。不過ChatGPT通過持續(xù)投入大量的人力,把這條路走通了,從而更進(jìn)一步驗(yàn)證了那句話,“有多少人工,就有多少智能”。

不過,需要注意的是,ChatGPT以及一系列超大規(guī)模預(yù)訓(xùn)練語言模型的成功將為自然語言處理帶來新的范式變遷,即從以BERT為代表的預(yù)訓(xùn)練+精調(diào)(Fine-tuning)范式,轉(zhuǎn)換為以GPT-3為代表的預(yù)訓(xùn)練+提示(Prompting)的范式[3]。所謂提示,指的是通過構(gòu)造自然語言提示符(Prompt),將下游任務(wù)轉(zhuǎn)化為預(yù)訓(xùn)練階段的語言模型任務(wù)。例如,若想識(shí)別句子“我喜歡這部電影?!钡那楦袃A向性,可以在其后拼接提示符“它很 ”。如果預(yù)訓(xùn)練模型預(yù)測空格處為“精彩”,則句子大概率為褒義。這樣做的好處是無需精調(diào)整個(gè)預(yù)訓(xùn)練模型,就可以調(diào)動(dòng)模型內(nèi)部的知識(shí),完成“任意”的自然語言處理任務(wù)。當(dāng)然,在ChatGPT出現(xiàn)之前,這種范式轉(zhuǎn)變的趨勢并不明顯,主要有兩個(gè)原因:

第一,GPT-3級(jí)別的大模型基本都掌握在大公司手里,因此學(xué)術(shù)界在進(jìn)行預(yù)訓(xùn)練+提示的研究時(shí)基本都使用規(guī)模相對(duì)比較小的預(yù)訓(xùn)練模型。由于規(guī)模規(guī)模不夠大,因此預(yù)訓(xùn)練+提示的效果并不比預(yù)訓(xùn)練+精調(diào)的效果好。而只有當(dāng)模型的規(guī)模足夠大后,才會(huì)涌現(xiàn)(Emerge)出“智能”[4]。最終,導(dǎo)致之前很多在小規(guī)模模型上得出的結(jié)論,在大規(guī)模模型下都未必適用了。

第二,如果僅利用預(yù)訓(xùn)練+提示的方法,由于預(yù)訓(xùn)練的語言模型任務(wù)和下游任務(wù)之間差異較大,導(dǎo)致這種方法除了擅長續(xù)寫文本這種預(yù)訓(xùn)練任務(wù)外,對(duì)其他任務(wù)完成得并不好。因此,為了應(yīng)對(duì)更多的任務(wù),需要在下游任務(wù)上繼續(xù)預(yù)訓(xùn)練(也可以叫預(yù)精調(diào)),而且現(xiàn)在的趨勢是在眾多的下游任務(wù)上預(yù)精調(diào)大模型,以應(yīng)對(duì)多種、甚至未曾見過的新任務(wù)[5]。所以更準(zhǔn)確地說,預(yù)訓(xùn)練+預(yù)精調(diào)+提示將成為自然語言處理的新范式。

不同于傳統(tǒng)預(yù)訓(xùn)練+精調(diào)范式,預(yù)訓(xùn)練+預(yù)精調(diào)+提示范式將過去一個(gè)自然語言處理模型擅長處理一個(gè)具體任務(wù)的方式,轉(zhuǎn)換為了用一個(gè)模型處理多個(gè)任務(wù),甚至未曾見過的通用任務(wù)的方式。所以從這個(gè)角度來講,通用人工智能也許真的即將到來了。這似乎也和我?guī)啄昵暗念A(yù)測相吻合,我當(dāng)時(shí)曾預(yù)測,“結(jié)合自然語言處理歷次范式變遷的規(guī)律(圖1),2018年預(yù)訓(xùn)練+精調(diào)的范式出現(xiàn)之后5年,即2023年自然語言處理也許將迎來新的范式變遷”。

30d6543e-76c4-11ed-8abf-dac502259ad0.jpg

那么,接下來如何進(jìn)一步提升預(yù)訓(xùn)練+預(yù)精調(diào)+提示新范式的能力,并在實(shí)際應(yīng)用中將其落地呢?

首先,顯式地利用人工標(biāo)注和反饋仍然費(fèi)時(shí)費(fèi)力,我們應(yīng)該設(shè)法更自然地獲取并利用人類的反饋。也就是在實(shí)際應(yīng)用場景中,獲取真實(shí)用戶的自然反饋,如其回復(fù)的語句、所做的行為等,并利用這些反饋信息提升系統(tǒng)的性能,我們將這種方式稱為交互式自然語言處理。不過用戶的交互式反饋相對(duì)稀疏,并且有些用戶會(huì)做出惡意的反饋,如何克服稀疏性以及避免惡意性反饋都將是亟待解決的問題。

其次,目前該范式生成的自然語言文本具有非常好的流暢性,但是經(jīng)常會(huì)出現(xiàn)事實(shí)性錯(cuò)誤,也就是會(huì)一本正經(jīng)地胡說八道。當(dāng)然,使用上面的交互式自然語言處理方法可以一定程度上解決此類問題,不過對(duì)于用戶都不知道答案的問題,他們是無法對(duì)結(jié)果進(jìn)行反饋的。此時(shí)又回到了可解釋性差,這一深度學(xué)習(xí)模型的老問題上。如果能夠像寫論文時(shí)插入?yún)⒖嘉墨I(xiàn)一樣,在生成的結(jié)果中插入相關(guān)信息的出處,則會(huì)大大提高結(jié)果的可解釋性。

最后,該范式依賴超大規(guī)模預(yù)訓(xùn)練語言模型,然而這些模型目前只掌握在少數(shù)的大公司手中,即便有個(gè)別開源的大模型,由于其過于龐大,小型公司或研究組也無法下載并使用它們。所以,在線調(diào)用是目前使用這些模型最主要的模式。在該模式下,如何針對(duì)不同用戶面對(duì)的不同任務(wù),使用用戶私有的數(shù)據(jù)對(duì)模型進(jìn)行進(jìn)一步預(yù)精調(diào),并且不對(duì)公有的大模型造成影響,成為該范式實(shí)際應(yīng)用落地所迫切需要解決的問題。此外,為了提高系統(tǒng)的運(yùn)行速度,如何通過在線的大模型獲得離線的小模型,并且讓離線小模型保持大模型在某些任務(wù)上的能力,也成為模型能實(shí)際應(yīng)用的一種解決方案。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249653
  • nlp
    nlp
    +關(guān)注

    關(guān)注

    1

    文章

    490

    瀏覽量

    22629

原文標(biāo)題:哈工大車萬翔:自然語言處理范式正在變遷

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何優(yōu)化自然語言處理模型的性能

    優(yōu)化自然語言處理(NLP)模型的性能是一個(gè)多方面的任務(wù),涉及數(shù)據(jù)預(yù)處理、特征工程、模型選擇、模型調(diào)參、模型集成與融合等多個(gè)環(huán)節(jié)。以下是一些具體的優(yōu)化策略: 一、數(shù)據(jù)預(yù)處理優(yōu)化 文本清洗
    的頭像 發(fā)表于 12-05 15:30 ?1709次閱讀

    如何使用自然語言處理分析文本數(shù)據(jù)

    使用自然語言處理(NLP)分析文本數(shù)據(jù)是一個(gè)復(fù)雜但系統(tǒng)的過程,涉及多個(gè)步驟和技術(shù)。以下是一個(gè)基本的流程,幫助你理解如何使用NLP來分析文本數(shù)據(jù): 1. 數(shù)據(jù)收集 收集文本數(shù)據(jù) :從各種來源(如社交
    的頭像 發(fā)表于 12-05 15:27 ?1593次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個(gè)核心領(lǐng)域,它使計(jì)算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測決策。自然語言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)闄C(jī)器學(xué)習(xí)提供了一種強(qiáng)大的工具,用于從大量文本數(shù)據(jù)中提取模式和知識(shí),從而提高NLP系
    的頭像 發(fā)表于 12-05 15:21 ?1989次閱讀

    語音識(shí)別與自然語言處理的關(guān)系

    在人工智能的快速發(fā)展中,語音識(shí)別和自然語言處理(NLP)成為了兩個(gè)重要的技術(shù)支柱。語音識(shí)別技術(shù)使得機(jī)器能夠理解人類的語音,而自然語言處理則讓機(jī)器能夠理解、解釋和生成人類
    的頭像 發(fā)表于 11-26 09:21 ?1507次閱讀

    什么是LLM?LLM在自然語言處理中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,自然語言處理(NLP)領(lǐng)域迎來了革命性的進(jìn)步。其中,大型語言模型(LLM)的出現(xiàn),標(biāo)志著我們對(duì)語言理解能力的一次
    的頭像 發(fā)表于 11-19 15:32 ?3666次閱讀

    ASR與自然語言處理的結(jié)合

    。以下是對(duì)ASR與自然語言處理結(jié)合的分析: 一、ASR與NLP的基本概念 ASR(自動(dòng)語音識(shí)別) : 專注于人類的語音轉(zhuǎn)換為文字。 涉及從聲音信號(hào)中提取特征,并將這些特征映射到文本。 NLP(
    的頭像 發(fā)表于 11-18 15:19 ?1026次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    。 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),它通過卷積層來提取輸入數(shù)據(jù)的特征。在圖像處理中,卷積層能夠捕捉局部特征,如邊緣和紋理。在自然語言處理中,我們可以文本視為一
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其在處理序列數(shù)據(jù)方面的優(yōu)勢而在NLP中
    的頭像 發(fā)表于 11-15 09:41 ?821次閱讀

    使用LSTM神經(jīng)網(wǎng)絡(luò)處理自然語言處理任務(wù)

    自然語言處理(NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它旨在使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體——長短期記憶(LSTM)網(wǎng)絡(luò)的出現(xiàn)
    的頭像 發(fā)表于 11-13 09:56 ?1167次閱讀

    自然語言處理的未來發(fā)展趨勢

    隨著技術(shù)的進(jìn)步,自然語言處理(NLP)已經(jīng)成為人工智能領(lǐng)域的一個(gè)重要分支。NLP的目標(biāo)是使計(jì)算機(jī)能夠理解、解釋和生成人類語言,這不僅涉及到語言的表層形式,還包括
    的頭像 發(fā)表于 11-11 10:37 ?1728次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的區(qū)別

    是計(jì)算機(jī)科學(xué)、人工智能和語言學(xué)領(lǐng)域的分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。NLP的目標(biāo)是縮小人類語言和計(jì)算機(jī)之間的差距,使計(jì)算機(jī)能夠處理和生成
    的頭像 發(fā)表于 11-11 10:35 ?1558次閱讀

    自然語言處理的應(yīng)用實(shí)例

    在當(dāng)今數(shù)字化時(shí)代,自然語言處理(NLP)技術(shù)已經(jīng)成為我們?nèi)粘I畹囊徊糠?。從智能手機(jī)的語音助手到在線客服機(jī)器人,NLP技術(shù)的應(yīng)用無處不在。 1. 語音識(shí)別與虛擬助手 隨著Siri、Google
    的頭像 發(fā)表于 11-11 10:31 ?1620次閱讀

    使用LLM進(jìn)行自然語言處理的優(yōu)缺點(diǎn)

    自然語言處理(NLP)是人工智能和語言學(xué)領(lǐng)域的一個(gè)分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。大型語言模型(LLM)是NLP領(lǐng)域的一
    的頭像 發(fā)表于 11-08 09:27 ?2461次閱讀

    Llama 3 在自然語言處理中的優(yōu)勢

    自然語言處理(NLP)的快速發(fā)展中,我們見證了從基于規(guī)則的系統(tǒng)到基于機(jī)器學(xué)習(xí)的模型的轉(zhuǎn)變。隨著深度學(xué)習(xí)技術(shù)的興起,NLP領(lǐng)域迎來了新的突破。Llama 3,作為一個(gè)假設(shè)的先進(jìn)NLP模型,代表了這一
    的頭像 發(fā)表于 10-27 14:22 ?739次閱讀

    AI智能化問答:自然語言處理技術(shù)的重要應(yīng)用

    自然語言處理(NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。問答系統(tǒng)作為NLP的一個(gè)重要應(yīng)用,能夠精確地解析用戶以自然語言提出的問題,并從包含豐富
    的頭像 發(fā)表于 10-12 10:58 ?1103次閱讀
    AI智能化問答:<b class='flag-5'>自然語言</b><b class='flag-5'>處理</b>技術(shù)的重要應(yīng)用