99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

一種抑制枝晶和提高金屬利用率的新型固-固轉化電化學

清新電源 ? 來源:清新電源 ? 作者:景 ? 2022-11-02 09:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

研究背景

因其具有成本低、容量高、環(huán)境友好等優(yōu)點,金屬鋅電池引起了廣泛關注。但是基于沉積-溶解反應的鋅金屬電極仍然面臨著枝晶生長,以及負極利用率低的問題。幾十年來,研究人員經(jīng)歷了艱辛的探索,但是從電極反應的根本上來說,基于傳統(tǒng)的沉積-溶解反應機制的鋅金屬電池無法避免擴散限制凝聚效應(DLA)引起的枝晶生長。

在堿性或中性電解質(zhì)中,由固-液(StoL)鋅溶解和液-固(LtoS)鋅電沉積產(chǎn)生的DLA仍然沒有解決。如果能在金屬鋅電池中轉換StoL和LtoS過程,可能有希望從根本上解決枝晶問題。

成果簡介

鑒于此,復旦大學晁棟梁(通訊作者)等人注意到鉛酸電池和鎳鎘電池很少遇到枝晶生長這一難題,其主要原因是鉛酸電池和鎳鎘電池負極反應機制為微溶鹽-金屬的固-固轉化反應。因此從商用鉛酸/鎳鎘中找到靈感,報道了一種抑制枝晶和提高金屬利用率的新型固-固轉化電化學。

研究亮點

1、提出了堿式碳酸鋅-金屬鋅的固-固轉化(StoS)機制,有效地避免了由于StoL/LtoS產(chǎn)生的DLA效應引發(fā)的鋅枝晶生長過程;

2、Ni-ZZG全電池中的金屬鋅負極的利用率高達91%,實現(xiàn)超過2000次循環(huán)的長壽命,以及270 Wh kg-1的卓越能量密度。

圖文介紹

39aafe1a-5a41-11ed-a3b6-dac502259ad0.png

1 傳統(tǒng)固-液、液-固反應與固-固轉化反應示意圖。(a)傳統(tǒng)中性、弱酸性電解液鋅離子液-固還原反應過程(b)堿式碳酸鋅-金屬鋅固-固還原反應過程。

在傳統(tǒng)液-固反應過程中,金屬鋅負極的氧化產(chǎn)物通常是可溶的,Zn2+很容易從電極表面擴散到電解液中,產(chǎn)生一個濃度梯度,進而導致枝晶的產(chǎn)生(圖1a)。

通過簡單的沉淀反應,設計了2ZnCO3-3Zn(OH)2@graphene(ZZG)復合電極。石墨烯不僅在化學合成過程中提供了抑制2ZnCO3-3Zn(OH)2聚集的成核點,而且在電化學充電/放電過程中作為導電緩沖網(wǎng)絡緩解了體積變化。采用2ZnCO3-3Zn(OH)2作為負極活性材料,在K2CO3電解液中,2ZnCO3-3Zn(OH)2表現(xiàn)出微溶性。

充電過程中解離出的鋅離子原位還原為金屬鋅;放電過程中金屬鋅解離出鋅離子與電解液中碳酸根和氫氧根結合原位轉化生成堿式碳酸鋅沉淀(圖1b)。該反應過程為固-固反應機制(StoS),有效地避免了固-液(StoL)、液-固(LtoS)反應存在的DLA效應。

39d8979e-5a41-11ed-a3b6-dac502259ad0.png


2局部溶劑化環(huán)境的分子動力學模擬。(a)模擬2 M K2CO3電解液結構,(b) 模擬 2 M ZnSO4電解液結構,(c)CO32?-O徑向分布函數(shù),(d)Zn2+-O徑向分布函數(shù)。

采用分子動力學模擬和相應的電化學測試,以分析有關K2CO3電解質(zhì)的溶劑化結構和離子傳輸(圖2A)。

計算出的CO32-和OH-在2M K2CO3電解液中的擴散系數(shù)遠遠高于Zn2+在2M ZnSO4電解液中的擴散系數(shù)(圖2B)。對分子動力學模擬結果進一步分析表明,Zn2+的第一個溶劑層位于2埃左右,配位數(shù)約為6,而對于CO32-,C─O(水)的第一個配位峰出現(xiàn)在約3.5埃處(圖2C、D)。

CO32-的溶劑層雖然有10個水分子,但它不是剛性的。Zn2+配位的水分子的氫鍵會減慢Zn2+的擴散。而CO32?更加“柔軟”的溶劑化層使它擁有更高的離子遷移速率,這非常有利于堿式碳酸鋅-金屬鋅固-固轉化反應的快速進行。

3a0a6c6a-5a41-11ed-a3b6-dac502259ad0.png


3 微溶鹽負極電化學性能。(a)ZZG不同倍率下充放電平臺,(b)5C倍率下循環(huán)穩(wěn)定性,(c)ZZG和傳統(tǒng)Zn負極非對稱電池性能對比,(d)ZZG非對稱電池庫倫效率,(e)ZZG對稱電池性能。

使用三電極測試系統(tǒng)研究了微溶鹽負極的電化學性能。圖3A顯示了ZZG電極在0.5C(1C=480mA g-1)時的恒電流充放電曲線。在0.5C的電流密度下,可以看出明顯的充放電平臺。初始充電容量為465 mAh g-1,對應于于91.2%的初始庫倫效率,2ZnCO3-3Zn(OH)2的鋅利用率在不對稱電池中高達95.7%。

ZZG在電流密度為1、2、5和10 C時的放電容量分別為432、386、328和281 mAh g-1,表明其具有卓越的倍率能力。ZZG在5 C下經(jīng)過3500次充放電循環(huán),保持接近100%的高庫侖效率,并具有80%的容量保持率(圖3B)。

采用ZZG||Zn非對稱電池進一步研究了K2CO3電解質(zhì)中ZZG的鋅還原/氧化庫侖效率。ZZG||Zn電池表現(xiàn)出2ZnCO3·3Zn(OH)2→5Zn(對應于傳統(tǒng)的鋅金屬負極鍍鋅(Zn2+→Zn)和5Zn→2ZnCO3·3Zn(OH)2(對應于傳統(tǒng)鋅金屬負極Zn→Zn2+中的Zn剝離)氧化平臺。300次循環(huán)后容量保持在0.998 m Ah(圖3C)。

然而,Cu||Zn非對稱電池在KOH和ZnSO4電解液中的鍍/脫鋅過電位迅速增大,相應的脫鋅容量急劇下降。在初始循環(huán)后,ZZG||Zn電池在K2CO3電解液中的庫倫效率在10個循環(huán)內(nèi)迅速增加到>99.0 %,并最終在50個循環(huán)后穩(wěn)定在99.8 %(圖3D)。

相比之下,傳統(tǒng)鋅金屬在KOH和ZnSO4電解液中的鍍鋅/脫鋅庫倫效率在20次循環(huán)后迅速下降,這可歸因于鋅枝晶的形成。在1 m Ah cm-2的面積容量下,ZZG+Zn||ZZG+Zn對稱電池循環(huán)700 h顯示出高可逆性和穩(wěn)定性,而Zn||Zn對稱電池在僅60h后失效(圖3E)。

3b223024-5a41-11ed-a3b6-dac502259ad0.png

4 ZZG負極在2M K2CO3電解液中循環(huán)后的形態(tài)。(a)ZZG充放電原位XRD,(b-d)ZZG還原反應后TEM圖片,(e-g)再次氧化后的ZZG,(h)和(i)100次循環(huán)后,ZZG電極SEM圖片,(j)和(k)在KOH電解液中,ZnO電極循環(huán)100次后電極表面狀態(tài)。

根據(jù)原位同步輻射XRD結果(圖4A),2ZnCO3-3Zn(OH)2在放電過程中被還原成金屬鋅,而金屬鋅在充電過程中被氧化,形成2ZnCO3-3Zn(OH)2晶體。進一步監(jiān)測了ZZG電極在2M K2CO3電解液中循環(huán)時的形態(tài)變化。在完全放電狀態(tài)下,被還原的鋅顆粒獨立地散布在石墨烯基底上,呈現(xiàn)出六邊形的形狀(圖4B至D)。

充電后,鋅粒子被氧化成2ZnCO3-3Zn(OH)2,均勻地分布在石墨烯片上(圖4E至G),這與原始ZZG非常相似。即使在3500次循環(huán)后,在放電狀態(tài)下仍然是無晶須的多孔特征(圖4H和I)。在6M KOH和飽和ZnO電解質(zhì)中的鋅表面在50個循環(huán)后呈現(xiàn)出多孔結構,并有針狀樹枝形結構(圖4J和K)。這種差異應該歸因于特殊的StoS機制,它有效地抑制了樹枝狀的生長。

3b74197a-5a41-11ed-a3b6-dac502259ad0.png

5 在2M K2CO3+0.1M KOH電解液中的Ni-ZZG全電池和1-Ah袋式電池的電化學性能。(a)氫氧化鎳-ZZG全電池CV,(b)和(c)0.5 C以及不同倍率下全電池放電曲線,(d)5 C倍率下全電池循環(huán)性能,(e)不同體系鋅負極利用率對比,(f)和(g)軟包電池循環(huán)性能以及自放電性能,(h)不同電池體系各項性能對比。

作為該機理的概念驗證,選用氫氧化鎳作為正極,2 M K2CO3+0.1 M KOH作為電解液組裝了ZZG//Ni全電池。全電池的CV曲線顯示,在0.5 mV s-1的掃描速率下,陽極峰和陰極峰分別位于1.90和1.69 V(圖5A)。從第一個周期后的CV曲線和充放電曲線的重疊可以證明,氧化還原過程是高度可逆的。如圖5B所示,該電池可以獲得248 mAh g-1的良好放電容量。

此外,Ni-ZZG電池顯示出極好的倍率性能,在1、2、5和10C的條件下,分別達到220、190、185和170 mAh g-1的高放電容量(圖5C)。全電池2000次循環(huán)后,容量保持率80%左右(圖5D)。此外,經(jīng)計算,全電池的鋅利用率高達91.3%,與那些報道的數(shù)值相比屬于最高值(圖5E)。

為了驗證該裝置的可行性,還在環(huán)境空氣條件下制造了一個袋式Ni-ZZG電池。在0.5A的充放電電流下,該電池提供了1Ah的容量,這相當于135 Wh kg-1的高能量密度(圖5F)。在充放電電流為1 A時,經(jīng)過500次循環(huán),該電池表現(xiàn)出90%的容量保持率。Ni-ZZG電池在靜置1周后有90%的容量保持率(圖5F)。

Ni-ZZG電池的實用指標,包括循環(huán)壽命、能量密度、環(huán)境友好性、安全性和經(jīng)濟性,與其他商業(yè)電池系統(tǒng)進行了對比評估(圖5H)??梢缘贸鼋Y論,考慮到內(nèi)在安全、低成本、無毒和電化學穩(wěn)定性等優(yōu)點,Ni-ZZG電池體系在某些場合可能是這些電池系統(tǒng)的一個有前途的替代品。

總結與展望

本文作者在弱堿性電解液中采用了金屬微溶鹽作為負極活性材料,可以有效地抑制金屬枝晶生長,并顯著提高利用率。新的StoS轉換反應機制消除了傳統(tǒng)的LtoS反應中由于金屬離子擴散而產(chǎn)生的限制。受益于此,2ZnCO3-3Zn(OH)2和CuCO3-Cu(OH)2可以表現(xiàn)出較長的循環(huán)壽命,而不存在Zn或Cu枝晶生長。

當與鎳基正極結合時,Ni-ZZG全電池表現(xiàn)出超過91%的高鋅利用率,超過2000次循環(huán)的長壽命,以及270 Wh kg-1的卓越能量密度。這樣的StoS轉換電化學可能為解決金屬負極的利用率和枝晶問題提供了一條新途徑。






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電解質(zhì)
    +關注

    關注

    6

    文章

    821

    瀏覽量

    20774
  • XRD
    XRD
    +關注

    關注

    0

    文章

    133

    瀏覽量

    10093
  • 電池系統(tǒng)

    關注

    9

    文章

    408

    瀏覽量

    30473
  • 鋰金屬電池
    +關注

    關注

    0

    文章

    140

    瀏覽量

    4620

原文標題:Sci. Adv.:91%!高水系電池鋅利用率

文章出處:【微信號:清新電源,微信公眾號:清新電源】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    錫膏如何征服高功率封裝?文破解高密度封裝的散熱密碼

    錫膏是專為芯片設計的錫基焊料,通過冶金結合實現(xiàn)高強度、高導熱連接,對比傳統(tǒng)銀膠與普通錫膏,具備超高導熱(60-70W/m?K)、高強度(剪切強度 40MPa+)、精密填充(間隙
    的頭像 發(fā)表于 04-10 17:50 ?547次閱讀
    <b class='flag-5'>固</b><b class='flag-5'>晶</b>錫膏如何征服高功率封裝?<b class='flag-5'>一</b>文破解高密度封裝的散熱密碼<b class='flag-5'>固</b><b class='flag-5'>晶</b>

    EtherCAT轉CANopen網(wǎng)關在半導體機設備上的應用

    EtherCAT轉CANopen網(wǎng)關在半導體機設備上的應用主要體現(xiàn)在以下幾個方面:實現(xiàn)設備間的無縫通信在半導體機設備中,可能同時存在使用EtherCAT和CANopen兩
    的頭像 發(fā)表于 03-28 14:45 ?245次閱讀
    EtherCAT轉CANopen網(wǎng)關在半導體<b class='flag-5'>固</b><b class='flag-5'>晶</b>機設備上的應用

    光譜電化學及其在微流體中的應用現(xiàn)狀與挑戰(zhàn)(上)

    本文綜述了光譜電化學(SEC)技術的最新進展。光譜和電化學的結合使SEC能夠對電化學反應過程中分析物的電子轉移動力學和振動光譜指紋進行詳細而全面的研究。盡管SEC是一種有前景的技術,但
    的頭像 發(fā)表于 02-14 15:07 ?301次閱讀

    基于LMP91000在電化學傳感器電極故障檢測中的應用詳解

    傳感器缺失時輸出(啟用故障檢測) 3 電極故障檢測的數(shù)據(jù)分析算法 以上測試給出了電化學傳感器的常見電極故障下對應的輸出波形,并對各自輸出特性進行了簡要分析,以下是一種可供參考數(shù)據(jù)分析處理流程。主要實現(xiàn)
    發(fā)表于 02-11 08:02

    全固態(tài)鋰金屬電池的最新研究

    的生長。 在此,美國馬里蘭大學王春生教授等人報道類還原性親電試劑與金屬-親核材料接觸時獲得電子和陽離子,發(fā)生電化學還原并形成固體還原性親電試劑界面層(solid reductive-electrophile interphas
    的頭像 發(fā)表于 01-23 10:52 ?827次閱讀
    全固態(tài)鋰<b class='flag-5'>金屬</b>電池的最新研究

    什么是電化學微通道反應器

    電化學微通道反應器概述 電化學微通道反應器是一種結合了電化學技術和微通道反應器優(yōu)點的先進化學反應設備。雖然搜索結果中沒有直接提到“
    的頭像 發(fā)表于 01-22 14:34 ?462次閱讀

    大為錫膏帶你認識錫膏的品質(zhì)

    錫膏是以導熱率為40W/M.K左右錫銀銅等金屬合金做基體的鍵合材料,完全滿足RoHS及無鹵等環(huán)保要求,用于LED芯片封裝及二極管等功率器件封裝,以實現(xiàn)金屬之間的融合。
    的頭像 發(fā)表于 12-20 09:46 ?745次閱讀
    大為錫膏帶你認識<b class='flag-5'>固</b><b class='flag-5'>晶</b>錫膏的品質(zhì)

    大為錫膏 | 錫膏/倒裝錫膏的特性與應用

    大為錫膏LED錫膏的未來從LED倒裝工藝發(fā)展的阻礙來看,困擾的不是支架的設計或熒光粉的涂布技術。而是錫膏/倒裝錫膏的技術,因為它們與原來的銀膠制程工藝差別不大,很容易就克服的工
    的頭像 發(fā)表于 12-20 09:42 ?584次閱讀
    大為錫膏 | <b class='flag-5'>固</b><b class='flag-5'>晶</b>錫膏/倒裝錫膏的特性與應用

    錫膏的應用

    錫膏是半導體芯片焊接錫膏的個總稱,起到導電、導熱和固定的作用,在LED行業(yè)的應用是基于倒裝芯片的應用。錫膏整個工藝特別的復雜,但是
    的頭像 發(fā)表于 12-20 09:37 ?1004次閱讀
    <b class='flag-5'>固</b><b class='flag-5'>晶</b>錫膏的應用

    大為錫膏 | 倒裝錫膏的區(qū)別

    錫膏是以導熱率為40W/M.K左右錫銀銅等金屬合金做基體的鍵合材料,完全滿足RoHS及無鹵等環(huán)保要求,用于LED芯片封裝及二極管等功率器件封裝,以實現(xiàn)金屬之間的融合。
    的頭像 發(fā)表于 12-18 08:17 ?571次閱讀
    大為錫膏 | 倒裝<b class='flag-5'>固</b><b class='flag-5'>晶</b>錫膏的區(qū)別

    安森美電化學傳感與無線傳輸解決方案助力遠程醫(yī)療

    和認知。當您將這種傳感能力與低功耗模擬前端(AFE)器件和低功耗藍牙技術相結合,并搭配物聯(lián)網(wǎng)技術進行遠程監(jiān)控時,可以進提高這些解決方案的有效性。本文將為您介紹電化學傳感器的設計原理,以及結合遠程醫(yī)療監(jiān)控應用的發(fā)展
    發(fā)表于 12-10 19:21 ?793次閱讀
    安森美<b class='flag-5'>電化學</b>傳感與無線傳輸解決方案助力遠程醫(yī)療

    電化學氣體傳感器信號放大調(diào)試經(jīng)驗

    非偏壓款:即是傳感器的兩級參考電壓是樣 ,VRE1=VRE2=200mV; 常見的電化學不帶偏壓傳感器有:硫化氫H2S、氨氣NH3、硫化氨(CH3)3N等等。 偏壓ETO款:即是傳感器的兩級
    發(fā)表于 11-16 11:26

    掃描速率對各體系的電化學行為有什么影響

    掃描速率(Scan Rate)是電化學測試中個重要的參數(shù),它影響著電化學反應的動力學特性和電極過程的控制步驟。在電化學實驗中,掃描速率決定了電位變化的速度,進而影響電極表面的電荷轉移
    的頭像 發(fā)表于 10-14 14:51 ?3659次閱讀

    電化學感知技術的新時代

    圖1智能健康監(jiān)測和可穿戴設備是先進傳感器平臺的關鍵應用(來源: Adobe Stock) 在科學探索的前沿,電化學感知是一種不可或缺且適應性強的工具,影響著各行各業(yè)。從生命科學、環(huán)境科學到工業(yè)材料
    發(fā)表于 09-05 11:43 ?1292次閱讀
    <b class='flag-5'>電化學</b>感知技術的新時代

    耦合可以解決哪些問題

    耦合是指聲波在固體介質(zhì)中傳播時,聲波與固體介質(zhì)的相互作用。聲耦合在許多領域都有廣泛的應用,如聲學、振動、噪聲控制、結構健康監(jiān)測等。 、聲耦合的基本概念 1.1 聲波的傳播 聲
    的頭像 發(fā)表于 08-09 15:19 ?1145次閱讀