99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

寬禁帶半導體的潛力

laisvl ? 來源:laisvl ? 作者:laisvl ? 2022-08-08 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

追求更高效的電子產(chǎn)品以功率器件為中心,而半導體材料則處于研發(fā)活動的前沿。硅的低成本和廣泛的可用性使其在幾年前超越鍺成為主要的功率半導體材料。然而,今天,硅正在將其在功率器件中的主導地位讓給兩種更高效率的替代品:碳化硅 (SiC) 和氮化鎵 (GaN)。

這些高度創(chuàng)新的材料屬于寬帶隙 (WBG) 半導體系列。WBG 非凡的物理和電氣特性使這些材料非常適合滿足高頻電源應用的性能需求,包括極端功率和工作溫度以及對以緊湊外形實現(xiàn)更快、高效、低損耗開關的激增要求。

WBG 設備的最新市場分析預測估計,未來 10 年的復合年增長率 (CAGR) 約為 30%,使全球銷售額從 2015 年的 2.1 億美元增至 2025 年的 37 億美元。

WBG 特性及在電力電子中的適用性

寬帶隙材料的物理和電氣特性決定了用它們構建的功率半導體的功能和應用特性。從物理角度來看,所有固態(tài)元素都有電子,這些電子要么與元素的原子核相連,要么在更高的能級(分別為價帶和導帶)上自由移動。價帶和導帶之間的能隙是定義和構建寬帶隙半導體的基本物理參數(shù)。WBG 材料的巨大帶隙轉化為更高的擊穿電場、更高的工作溫度能力和更低的輻射敏感性。

硅的帶隙為 1.12 電子伏特;砷化鎵,1.4 eV;碳化硅,2.86 eV;和氮化鎵,3.4 eV。隨著工作溫度的升高,價帶中電子的熱能相應增加,一旦達到特定的閾值溫度,就會進入導帶。在硅的情況下,從價帶躍遷到導帶所需的閾值溫度為 150°C。由于它們的高能隙,WBG 半導體可以達到更高的溫度,而無需電子積累能量。因此,帶隙越大,可持續(xù)的半導體工作溫度就越高。

與硅相比,SiC 和 GaN 的電子遷移率更高,使使用這些 WBG 材料構建的設備能夠以更高的開關速度運行。寬帶隙材料可以降低能耗。作為熱量耗散的能量的減少不僅減少了功率損失,而且使系統(tǒng)更小,與硅解決方案相比降低了成本。因此,WBG 半導體比硅等效物更有效。WBG 的卓越功率密度允許使用更緊湊的散熱器,并支持更高的工作溫度以及更高的開關頻率。

開關頻率的增加還降低了電感,從而減小了必需電容器的尺寸。高開關頻率可縮小組件尺寸并顯著降低噪聲和振動。

Infineon Technologies、NXP Semiconductors 和 STMicroelectronics 等公司正在使用 WBG 材料來適應電動汽車、光電和其他存在嚴苛工作條件的應用的新電源設計中所涉及的高功率和頻率。WBG 功率半導體超越了硅的性能極限,即使在關鍵的工作環(huán)境中也能保證出色的性能。WBG 器件還提供更低的導通電阻、更高的擊穿電壓以及更高的短期和長期可靠性。WBG 半導體的擊穿電場允許更低的漏電流和更高的工作電壓。

氮化鎵在三種選擇(GaN、SiC 和硅)中具有最高的電子遷移率,使其成為所需頻率非常高的應用的最佳材料。就碳化硅而言,其熱導率高于硅或 GaN。因此,碳化硅在高溫應用中具有效率優(yōu)勢,因為它最大限度地提高了導熱能力,從而增加了可實現(xiàn)的功率密度。由于其高熔點和高導熱性,碳化硅可以在比硅更高的溫度下工作。SiC 是具有高電壓和電流值的電源應用的首選材料,而 GaN 仍然是射頻領域的主要材料,其中電壓不會達到很高的值但擊穿電場更高。

碳化硅技術可以在高達 1,700 V 的電壓下工作。因此,碳化硅器件幾乎完全取代了能源、工業(yè)和運輸領域的硅絕緣柵雙極晶體管 (IGBT)。與此同時,GaN 半導體可以在高達 600 V 的電壓下工作?;?GaN 的 MOSFET肖特基二極管的損耗低于基于硅 IGBT 技術的器件。

pYYBAGHFa2GAVT-pAABeiFT9ayY891.jpg

圖 1:英飛凌利用其系統(tǒng)和制造專業(yè)知識以及自己的 SiC 技術生產(chǎn) CoolSic 產(chǎn)品組合。(圖片:英飛凌科技

英飛凌科技表示,其 CoolSiC 系列可讓工程師開發(fā)具有最佳系統(tǒng)成本/性能比的全新產(chǎn)品設計。英飛凌正在大批量生產(chǎn) 1,200-V CoolSiC MOSFET 的全面產(chǎn)品組合。這些器件的額定值為 30 mΩ 至 350 mΩ,并采用 TO247-3 和 TO247-4 外殼(圖 1)。

STMicroelectronics 表示,其 650V 和 1,700V SiC MOSFET 具有單位面積極低的導通電阻 (RDS(on)) 以及出色的開關性能,可轉化為更高效、更緊湊的系統(tǒng)。MOSFET 是 STPOWER 系列的一部分(圖 2)。

pYYBAGHFa22AIeb4AABfriGFWfY804.jpg

圖 2:STPOWER 產(chǎn)品組合基于寬帶隙材料的先進特性。(圖片:意法半導體

恩智浦為蜂窩基礎設施以及工業(yè)和國防市場提供 GaN-on-SiC 解決方案。隨著蜂窩市場轉向更高的頻率和功率水平,WBG 技術提供最先進的射頻性能以簡化 5G 部署。恩智浦 GaN 技術還支持國防和工業(yè)行業(yè)的高頻操作(圖 3)。

poYBAGHFa3iAGoFQAABfCELHl2c448.jpg

圖 3:MMRF5021H 125W CW GaN-on-SiC 晶體管用于寬帶射頻放大器,面向軍事和工業(yè)應用。(圖片:恩智浦)

隨著硅在功率和頻率方面達到其應用極限,GaN 和 SiC 技術在電力電子應用中占據(jù)主導地位,它們的特性滿足緊湊性、輕量化、高效率和高密度功率的要求。技術挑戰(zhàn)仍然存在,特別是在降低成本和總散熱方面,在半導體的情況下,這源于傳導和開關損耗。工程師必須處理 SiC 碳化物部分的一些缺陷,并克服氮化鎵制造過程中更關鍵的問題。

審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 功率器件
    +關注

    關注

    42

    文章

    1930

    瀏覽量

    92688
  • 半導體材料
    +關注

    關注

    11

    文章

    571

    瀏覽量

    30089
  • 寬禁帶半導體

    關注

    0

    文章

    97

    瀏覽量

    8338
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    半導體材料發(fā)展:硅基至超寬之變

    半導體
    jf_15747056
    發(fā)布于 :2025年04月14日 18:23:53

    半導體材料發(fā)展史:從硅基到超寬半導體的跨越

    半導體材料是現(xiàn)代信息技術的基石,其發(fā)展史不僅是科技進步的縮影,更是人類對材料性能極限不斷突破的見證。從第一代硅基材料到第四代超寬半導體,每一代材料的迭代都推動了電子器件性能的飛躍。
    的頭像 發(fā)表于 04-10 15:58 ?714次閱讀

    是德科技在半導體裸片上實現(xiàn)動態(tài)測試而且無需焊接或探針

    ?無需焊接或探針,即可輕松準確地測量功率半導體裸片的動態(tài)特性 ?是德科技夾具可在不損壞裸片的情況下實現(xiàn)快速、重復測試 ?寄生功率回路電感小于10nH,實現(xiàn)干凈的動態(tài)測試波形 是德
    發(fā)表于 03-14 14:36 ?410次閱讀

    技術如何提升功率轉換效率

    目前電氣化仍是減少碳排放的關鍵驅動力,而對高效電源的需求正在加速增長。與傳統(tǒng)硅器件相比,技術,如碳化硅(SiC)和氮化鎵( GaN)等仍是促進功率轉換效率的關鍵。工程師必須重新評估他們的驗證和測試方法,以應對當今電氣化的挑
    的頭像 發(fā)表于 02-19 09:37 ?464次閱讀
    <b class='flag-5'>寬</b><b class='flag-5'>禁</b><b class='flag-5'>帶</b>技術如何提升功率轉換效率

    第三代半導體器件封裝:挑戰(zhàn)與機遇并存

    一、引言隨著科技的不斷發(fā)展,功率半導體器件在電力電子系統(tǒng)、電動汽車、智能電網(wǎng)、新能源并網(wǎng)等領域發(fā)揮著越來越重要的作用。近年來,第三代功率半導體
    的頭像 發(fā)表于 02-15 11:15 ?795次閱讀
    第三代<b class='flag-5'>半導體</b>器件封裝:挑戰(zhàn)與機遇并存

    第三代功率半導體的應用

    本文介紹第三代功率半導體的應用 在電動汽車的核心部件中,車用功率模塊(當前主流技術為IGBT)占據(jù)著舉足輕重的地位,它不僅決定了電驅動系統(tǒng)的關鍵性能,還占據(jù)了電機逆變器成本的40
    的頭像 發(fā)表于 01-15 10:55 ?616次閱讀
    第三代<b class='flag-5'>寬</b><b class='flag-5'>禁</b><b class='flag-5'>帶</b>功率<b class='flag-5'>半導體</b>的應用

    安森美解讀SiC制造都有哪些挑戰(zhàn)?粉末純度、SiC晶錠一致性

    硅通常是半導體技術的基石。然而,硅也有局限性,尤其在電力電子領域,設計人員面臨著越來越多的新難題。解決硅局限性的一種方法是使用半導體
    的頭像 發(fā)表于 01-05 19:25 ?1773次閱讀
    安森美解讀SiC制造都有哪些挑戰(zhàn)?粉末純度、SiC晶錠一致性

    白皮書導讀 | 電機驅動系統(tǒng)中的帶開關器件

    時存在一些限制,如總體損耗較高、開關頻率和功率輸送受限等。隨著第三代半導體的興起,器件的應用使得提高電機的功率密度、功率輸送能力和效率成為可能?!峨姍C驅動系統(tǒng)
    的頭像 發(fā)表于 12-25 17:30 ?518次閱讀
    白皮書導讀 | 電機驅動系統(tǒng)中的<b class='flag-5'>寬</b><b class='flag-5'>禁</b>帶開關器件

    第三代半導體:碳化硅和氮化鎵介紹

    ? 第三代功率半導體在高溫、高頻、高耐壓等方面的優(yōu)勢,且它們在電力電子系統(tǒng)和電動汽車等領域中有著重要應用。本文對其進行簡單介紹。 以碳化硅(SiC)和氮化鎵(GaN)為代表的
    的頭像 發(fā)表于 12-05 09:37 ?1426次閱讀
    第三代<b class='flag-5'>寬</b><b class='flag-5'>禁</b><b class='flag-5'>帶</b><b class='flag-5'>半導體</b>:碳化硅和氮化鎵介紹

    安世半導體與德國汽車零件供應商達成合作

    來源:集邦化合物半導體 近日,安世半導體宣布與德國汽車供應商KOSTAL(科世達)建立戰(zhàn)略合作伙伴關系,旨在生產(chǎn)更符合汽車應用嚴苛要求的
    的頭像 發(fā)表于 11-08 11:33 ?1024次閱讀

    跨越時代 —— 第四代半導體潛力無限

    拭目以待。 摘要 第一代半導體材料以硅(Si)和鍺(Ge)材料為代表,第二代半導體材料砷化鎵(GaAs)、磷化銦(InP)為代表,第三代半導體材料指
    的頭像 發(fā)表于 09-26 15:35 ?1316次閱讀
    跨越時代 —— 第四代<b class='flag-5'>半導體</b><b class='flag-5'>潛力</b>無限

    鎵仁半導體完成近億元Pre-A輪融資

    杭州鎵仁半導體有限公司近日宣布成功完成近億元的Pre-A輪融資,同時與杭州銀行達成重要戰(zhàn)略合作。本輪融資由九智資本領投,普華資本鼎力參與,彰顯了資本市場對鎵仁半導體
    的頭像 發(fā)表于 08-12 11:10 ?1180次閱讀

    功率半導體雙脈沖測試方案

    半導體作為第三代半導體功率器件,在電源處理器中充當了越來越重要的角色。其具有能量密度高、工作頻率高、操作溫度高等先天優(yōu)勢,成為各種電源
    的頭像 發(fā)表于 08-06 17:30 ?1452次閱讀
    功率<b class='flag-5'>半導體</b>雙脈沖測試方案

    半導體材料有哪些

    的角色。它們是構成電子器件和光電子器件的基礎。根據(jù)帶寬度的不同,半導體材料可以分為窄、中
    的頭像 發(fā)表于 07-31 09:09 ?2182次閱讀

    功率半導體半導體的區(qū)別

    功率半導體半導體是兩種不同類型的半導體材料,它們在電子器件中的應用有著很大的不同。以下是它們之間的一些主要區(qū)別: 材料類型:功率
    的頭像 發(fā)表于 07-31 09:07 ?1004次閱讀