99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Transformer模型結(jié)構(gòu),訓(xùn)練過程

新機(jī)器視覺 ? 來源:哈工大SCIR ? 作者:Alexander Rush ? 2022-06-20 14:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀

本文分享一篇來自哈佛大學(xué)關(guān)于Transformer的文章,作者為此文章寫了篇注解文檔,詳細(xì)介紹了模型結(jié)構(gòu),訓(xùn)練過程并給出了可實現(xiàn)的Transformer的代碼。本文僅作為研究人員和開發(fā)者的入門版教程。

下面分享一篇實驗室翻譯的來自哈佛大學(xué)一篇關(guān)于Transformer的詳細(xì)博文。

e88aea92-efd1-11ec-ba43-dac502259ad0.jpg

"Attention is All You Need"[1] 一文中提出的Transformer網(wǎng)絡(luò)結(jié)構(gòu)最近引起了很多人的關(guān)注。Transformer不僅能夠明顯地提升翻譯質(zhì)量,還為許多NLP任務(wù)提供了新的結(jié)構(gòu)。雖然原文寫得很清楚,但實際上大家普遍反映很難正確地實現(xiàn)。

所以我們?yōu)榇宋恼聦懥似⒔馕臋n,并給出了一行行實現(xiàn)的Transformer的代碼。本文檔刪除了原文的一些章節(jié)并進(jìn)行了重新排序,并在整個文章中加入了相應(yīng)的注解。此外,本文檔以Jupyter notebook的形式完成,本身就是直接可以運(yùn)行的代碼實現(xiàn),總共有400行庫代碼,在4個GPU上每秒可以處理27,000個tokens。

想要運(yùn)行此工作,首先需要安裝PyTorch[2]。這篇文檔完整的notebook文件及依賴可在github[3] 或 Google Colab[4]上找到。

需要注意的是,此注解文檔和代碼僅作為研究人員和開發(fā)者的入門版教程。這里提供的代碼主要依賴OpenNMT[5]實現(xiàn),想了解更多關(guān)于此模型的其他實現(xiàn)版本可以查看Tensor2Tensor[6] (tensorflow版本) 和 Sockeye[7](mxnet版本)

  • Alexander Rush (@harvardnlp[8] or srush@seas.harvard.edu)

0.準(zhǔn)備工作

# !pip install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl numpy matplotlib spacy torchtext seaborn
e89735fe-efd1-11ec-ba43-dac502259ad0.png

內(nèi)容目錄

準(zhǔn)備工作

背景

模型結(jié)構(gòu)

- Encoder和Decoder

- Encoder

- Decoder

- Attention

- Attention在模型中的應(yīng)用

- Position-wise前饋網(wǎng)絡(luò)

- Embedding和Softmax

- 位置編碼

- 完整模型

(由于原文篇幅過長,其余部分在下篇)

訓(xùn)練

- 批和掩碼

- 訓(xùn)練循環(huán)

- 訓(xùn)練數(shù)據(jù)和批處理

- 硬件和訓(xùn)練進(jìn)度

- 優(yōu)化器

- 正則化

- 標(biāo)簽平滑

第一個例子

- 數(shù)據(jù)生成

- 損失計算

- 貪心解碼

真實示例

- 數(shù)據(jù)加載

- 迭代器

- 多GPU訓(xùn)練

- 訓(xùn)練系統(tǒng)附加組件:BPE,搜索,平均

結(jié)果

- 注意力可視化

結(jié)論

本文注解部分都是以引用的形式給出的,主要內(nèi)容都是來自原文。

1.背景

減少序列處理任務(wù)的計算量是一個很重要的問題,也是Extended Neural GPU、ByteNet和ConvS2S等網(wǎng)絡(luò)的動機(jī)。上面提到的這些網(wǎng)絡(luò)都以CNN為基礎(chǔ),并行計算所有輸入和輸出位置的隱藏表示。

在這些模型中,關(guān)聯(lián)來自兩個任意輸入或輸出位置的信號所需的操作數(shù)隨位置間的距離增長而增長,比如ConvS2S呈線性增長,ByteNet呈現(xiàn)以對數(shù)形式增長,這會使學(xué)習(xí)較遠(yuǎn)距離的兩個位置之間的依賴關(guān)系變得更加困難。而在Transformer中,操作次數(shù)則被減少到了常數(shù)級別。

Self-attention有時候也被稱為Intra-attention,是在單個句子不同位置上做的Attention,并得到序列的一個表示。它能夠很好地應(yīng)用到很多任務(wù)中,包括閱讀理解、摘要、文本蘊(yùn)涵,以及獨(dú)立于任務(wù)的句子表示。端到端的網(wǎng)絡(luò)一般都是基于循環(huán)注意力機(jī)制而不是序列對齊循環(huán),并且已經(jīng)有證據(jù)表明在簡單語言問答和語言建模任務(wù)上表現(xiàn)很好。

據(jù)我們所知,Transformer是第一個完全依靠Self-attention而不使用序列對齊的RNN或卷積的方式來計算輸入輸出表示的轉(zhuǎn)換模型。

2.模型結(jié)構(gòu)

目前大部分比較熱門的神經(jīng)序列轉(zhuǎn)換模型都有Encoder-Decoder結(jié)構(gòu)[9]。Encoder將輸入序列映射到一個連續(xù)表示序列。

對于編碼得到的z,Decoder每次解碼生成一個符號,直到生成完整的輸出序列:。對于每一步解碼,模型都是自回歸的[10],即在生成下一個符號時將先前生成的符號作為附加輸入。

e8aa504e-efd1-11ec-ba43-dac502259ad0.jpg

Transformer的整體結(jié)構(gòu)如下圖所示,在Encoder和Decoder中都使用了Self-attention, Point-wise和全連接層。Encoder和decoder的大致結(jié)構(gòu)分別如下圖的左半部分和右半部分所示。

e8b8348e-efd1-11ec-ba43-dac502259ad0.jpg

2.Encoder和Decoder

Encoder

Encoder由N=6個相同的層組成。

e8c927c6-efd1-11ec-ba43-dac502259ad0.jpg

我們在每兩個子層之間都使用了殘差連接(Residual Connection) [11]和歸一化 [12]。

e8da3818-efd1-11ec-ba43-dac502259ad0.pnge8f4e65e-efd1-11ec-ba43-dac502259ad0.jpge905b722-efd1-11ec-ba43-dac502259ad0.jpg

每層都有兩個子層組成。第一個子層實現(xiàn)了“多頭”的 Self-attention,第二個子層則是一個簡單的Position-wise的全連接前饋網(wǎng)絡(luò)。

e90f83ec-efd1-11ec-ba43-dac502259ad0.jpg

Dncoder

Decoder也是由N=6個相同層組成。

e918170a-efd1-11ec-ba43-dac502259ad0.jpg

除了每個編碼器層中的兩個子層之外,解碼器還插入了第三種子層對編碼器棧的輸出實行“多頭”的Attention。與編碼器類似,我們在每個子層兩端使用殘差連接進(jìn)行短路,然后進(jìn)行層的規(guī)范化處理。

e92985d0-efd1-11ec-ba43-dac502259ad0.jpge938dfbc-efd1-11ec-ba43-dac502259ad0.jpge9450a62-efd1-11ec-ba43-dac502259ad0.jpg

3.Attention

e9545bb6-efd1-11ec-ba43-dac502259ad0.jpge9684de2-efd1-11ec-ba43-dac502259ad0.jpge97583cc-efd1-11ec-ba43-dac502259ad0.jpg

“多頭”機(jī)制能讓模型考慮到不同位置的Attention,另外“多頭”Attention可以在不同的子空間表示不一樣的關(guān)聯(lián)關(guān)系,使用單個Head的Attention一般達(dá)不到這種效果。

e98bf5d0-efd1-11ec-ba43-dac502259ad0.jpge998afaa-efd1-11ec-ba43-dac502259ad0.jpge9a2f74e-efd1-11ec-ba43-dac502259ad0.jpg

4.Attention在模型中的應(yīng)用

Transformer中以三種不同的方式使用了“多頭”Attention:

1) 在"Encoder-Decoder Attention"層,Query來自先前的解碼器層,并且Key和Value來自Encoder的輸出。Decoder中的每個位置Attend輸入序列中的所有位置,這與Seq2Seq模型中的經(jīng)典的Encoder-Decoder Attention機(jī)制[15]一致。

2) Encoder中的Self-attention層。在Self-attention層中,所有的Key、Value和Query都來同一個地方,這里都是來自Encoder中前一層的輸出。Encoder中當(dāng)前層的每個位置都能Attend到前一層的所有位置。

3) 類似的,解碼器中的Self-attention層允許解碼器中的每個位置Attend當(dāng)前解碼位置和它前面的所有位置。這里需要屏蔽解碼器中向左的信息流以保持自回歸屬性。具體的實現(xiàn)方式是在縮放后的點(diǎn)積Attention中,屏蔽(設(shè)為負(fù)無窮)Softmax的輸入中所有對應(yīng)著非法連接的Value。

5.Position-wise前饋網(wǎng)絡(luò)

e9b135d4-efd1-11ec-ba43-dac502259ad0.jpg

6.Embedding和Softmax

e9c15568-efd1-11ec-ba43-dac502259ad0.jpg

7.位置編碼

e9cf8e58-efd1-11ec-ba43-dac502259ad0.jpge9d868c0-efd1-11ec-ba43-dac502259ad0.jpge9e8b4fa-efd1-11ec-ba43-dac502259ad0.jpg

我們也嘗試了使用預(yù)學(xué)習(xí)的位置Embedding,但是發(fā)現(xiàn)這兩個版本的結(jié)果基本是一樣的。我們選擇正弦曲線版本的實現(xiàn),因為使用此版本能讓模型能夠處理大于訓(xùn)練語料中最大序了使用列長度的序列。

8.完整模型

下面定義了連接完整模型并設(shè)置超參的函數(shù)。

e9fda4b4-efd1-11ec-ba43-dac502259ad0.jpg

審核編輯 :李倩


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 代碼
    +關(guān)注

    關(guān)注

    30

    文章

    4900

    瀏覽量

    70688
  • Transformer
    +關(guān)注

    關(guān)注

    0

    文章

    151

    瀏覽量

    6513
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    809

    瀏覽量

    13945

原文標(biāo)題:搞懂Transformer結(jié)構(gòu),看這篇PyTorch實現(xiàn)就夠了

文章出處:【微信號:vision263com,微信公眾號:新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    算力網(wǎng)絡(luò)的“神經(jīng)突觸”:AI互聯(lián)技術(shù)如何重構(gòu)分布式訓(xùn)練范式

    ? 電子發(fā)燒友網(wǎng)綜合報道 隨著AI技術(shù)迅猛發(fā)展,尤其是大型語言模型的興起,對于算力的需求呈現(xiàn)出爆炸性增長。這不僅推動了智算中心的建設(shè),還對網(wǎng)絡(luò)互聯(lián)技術(shù)提出了新的挑戰(zhàn)。 ? 在AI大模型訓(xùn)練過程
    的頭像 發(fā)表于 06-08 08:11 ?6410次閱讀
    算力網(wǎng)絡(luò)的“神經(jīng)突觸”:AI互聯(lián)技術(shù)如何重構(gòu)分布式<b class='flag-5'>訓(xùn)練</b>范式

    數(shù)據(jù)標(biāo)注服務(wù)—奠定大模型訓(xùn)練的數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,數(shù)據(jù)標(biāo)注承擔(dān)著將原始數(shù)據(jù)轉(zhuǎn)化為機(jī)器可理解、可學(xué)
    的頭像 發(fā)表于 03-21 10:30 ?735次閱讀

    標(biāo)貝數(shù)據(jù)標(biāo)注服務(wù):奠定大模型訓(xùn)練的數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,數(shù)據(jù)標(biāo)注承擔(dān)著將原始數(shù)據(jù)轉(zhuǎn)化為機(jī)器可理解、可學(xué)
    的頭像 發(fā)表于 03-21 10:27 ?560次閱讀
    標(biāo)貝數(shù)據(jù)標(biāo)注服務(wù):奠定大<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>的數(shù)據(jù)基石

    模型訓(xùn)練:開源數(shù)據(jù)與算法的機(jī)遇與挑戰(zhàn)分析

    進(jìn)行多方位的總結(jié)和梳理。 在第二章《TOP 101-2024 大模型觀點(diǎn)》中,蘇州盛派網(wǎng)絡(luò)科技有限公司創(chuàng)始人兼首席架構(gòu)師蘇震巍分析了大模型訓(xùn)練過程中開源數(shù)據(jù)集和算法的重要性和影響,分析其在促進(jìn) AI 研究和應(yīng)用中的機(jī)遇,并警示相
    的頭像 發(fā)表于 02-20 10:40 ?602次閱讀
    大<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>:開源數(shù)據(jù)與算法的機(jī)遇與挑戰(zhàn)分析

    用PaddleNLP在4060單卡上實踐大模型預(yù)訓(xùn)練技術(shù)

    手把手教您如何在單張消費(fèi)級顯卡上,利用PaddleNLP實踐OpenAI的GPT-2模型的預(yù)訓(xùn)練。GPT-2的預(yù)訓(xùn)練關(guān)鍵技術(shù)與流程與GPT-4等大參數(shù)模型如出一轍,通過親手實踐GPT-
    的頭像 發(fā)表于 02-19 16:10 ?993次閱讀
    用PaddleNLP在4060單卡上實踐大<b class='flag-5'>模型</b>預(yù)<b class='flag-5'>訓(xùn)練</b>技術(shù)

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型的步驟: 一、前向傳播 前向傳播
    的頭像 發(fā)表于 02-12 15:10 ?900次閱讀

    騰訊公布大語言模型訓(xùn)練新專利

    大語言模型訓(xùn)練過程中引入第一摘要文本和第二摘要文本,為模型提供了更為豐富的學(xué)習(xí)信息。這兩個摘要文本在信息量上存在差異,且第一摘要文本中既包含正確語句也包含錯誤語句。這一設(shè)計使得模型
    的頭像 發(fā)表于 02-10 09:37 ?397次閱讀

    如何使用MATLAB構(gòu)建Transformer模型

    Transformer 模型在 2017 年由 Vaswani 等人在論文《Attentionis All You Need》中首次提出。其設(shè)計初衷是為了解決自然語言處理(Nature
    的頭像 發(fā)表于 02-06 10:21 ?4006次閱讀
    如何使用MATLAB構(gòu)建<b class='flag-5'>Transformer</b><b class='flag-5'>模型</b>

    GPU是如何訓(xùn)練AI大模型

    在AI模型訓(xùn)練過程中,大量的計算工作集中在矩陣乘法、向量加法和激活函數(shù)等運(yùn)算上。這些運(yùn)算正是GPU所擅長的。接下來,AI部落小編帶您了解GPU是如何訓(xùn)練AI大模型的。
    的頭像 發(fā)表于 12-19 17:54 ?740次閱讀

    如何訓(xùn)練自己的LLM模型

    訓(xùn)練自己的大型語言模型(LLM)是一個復(fù)雜且資源密集的過程,涉及到大量的數(shù)據(jù)、計算資源和專業(yè)知識。以下是訓(xùn)練LLM模型的一般步驟,以及一些關(guān)
    的頭像 發(fā)表于 11-08 09:30 ?1499次閱讀

    如何訓(xùn)練自己的AI大模型

    訓(xùn)練自己的AI大模型是一個復(fù)雜且耗時的過程,涉及多個關(guān)鍵步驟。以下是一個詳細(xì)的訓(xùn)練流程: 一、明確需求和目標(biāo) 首先,需要明確自己的需求和目標(biāo)。不同的任務(wù)和應(yīng)用領(lǐng)域需要不同類型的AI
    的頭像 發(fā)表于 10-23 15:07 ?4948次閱讀

    如何訓(xùn)練ai大模型

    訓(xùn)練AI大模型是一個復(fù)雜且耗時的過程,涉及多個關(guān)鍵步驟和細(xì)致的考量。 一、數(shù)據(jù)準(zhǔn)備 1. 數(shù)據(jù)收集 確定數(shù)據(jù)類型 :根據(jù)模型的應(yīng)用場景,確定需要收集的數(shù)據(jù)類型,如文本、圖像、音頻等。
    的頭像 發(fā)表于 10-17 18:17 ?2604次閱讀

    FP8模型訓(xùn)練中Debug優(yōu)化思路

    目前,市場上許多公司都積極開展基于 FP8 的大模型訓(xùn)練,以提高計算效率和性能。在此,我們整理并總結(jié)了客戶及 NVIDIA 技術(shù)團(tuán)隊在 FP8 模型訓(xùn)練過程中的 debug 思路和方法
    的頭像 發(fā)表于 09-06 14:36 ?910次閱讀
    FP8<b class='flag-5'>模型</b><b class='flag-5'>訓(xùn)練</b>中Debug優(yōu)化思路

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)知識學(xué)習(xí)

    收集海量的文本數(shù)據(jù)作為訓(xùn)練材料。這些數(shù)據(jù)集不僅包括語法結(jié)構(gòu)的學(xué)習(xí),還包括對語言的深層次理解,如文化背景、語境含義和情感色彩等。 自監(jiān)督學(xué)習(xí):模型采用自監(jiān)督學(xué)習(xí)策略,在大量無標(biāo)簽文本數(shù)據(jù)上學(xué)
    發(fā)表于 08-02 11:03

    AI訓(xùn)練的基本步驟

    AI(人工智能)訓(xùn)練是一個復(fù)雜且系統(tǒng)的過程,它涵蓋了從數(shù)據(jù)收集到模型部署的多個關(guān)鍵步驟。以下是對AI訓(xùn)練過程的詳細(xì)闡述,包括每個步驟的具體內(nèi)容,并附有相關(guān)代碼示例(以Python和sc
    的頭像 發(fā)表于 07-17 16:57 ?5249次閱讀