99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)算法應(yīng)用于器官芯片的最新研究進(jìn)展

MEMS ? 來源:MEMS ? 作者:MEMS ? 2022-03-29 09:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近期,西北工業(yè)大學(xué)柔性電子前沿科學(xué)中心的黃維院士、彭勃副教授、李林教授課題組發(fā)表了綜述文章,詳細(xì)且全面地介紹、分析并總結(jié)了將深度學(xué)習(xí)算法應(yīng)用于器官芯片的最新研究進(jìn)展,并對這一新型交叉領(lǐng)域的未來發(fā)展方向進(jìn)行了展望,相關(guān)綜述以“An Overview of Organs-on-Chips Based on Deep Learning” 為題發(fā)表在Research上。

研究背景

生物實(shí)驗(yàn)中使用最廣泛的疾病模型是二維細(xì)胞模型與動(dòng)物模型,是絕大多數(shù)藥物進(jìn)入臨床研究的“必修課”。

但它們都有一定的局限性:細(xì)胞模型在生物醫(yī)學(xué)研究中有一定的價(jià)值,但它不能充分地模擬人體器官組織的復(fù)雜生理結(jié)構(gòu)與功能;動(dòng)物模型是目前許多生物學(xué)研究的金標(biāo)準(zhǔn),但存在成本高、通量低、動(dòng)物倫理、種間差異等問題,極大地限制了藥物開發(fā)和其他生物學(xué)研究的進(jìn)展。

長久以來,疾病模型的缺陷極大地提高了新藥研發(fā)的成本并限制了病理學(xué)的研究。

在這一背景下,器官芯片(Organs-on-Chips,OoCs)的出現(xiàn)彌補(bǔ)了一般疾病模型的缺陷。

器官芯片是在微流控技術(shù)(Microfluidics)的發(fā)展過程中,與光刻技術(shù)、細(xì)胞生物學(xué)、材料和生物組織工程等技術(shù)相結(jié)合的產(chǎn)物。

作為一種微流控細(xì)胞培養(yǎng)裝置,器官芯片包含連續(xù)的灌注腔室,具有多細(xì)胞層結(jié)構(gòu)和組織界面,可以復(fù)現(xiàn)器官的局部結(jié)構(gòu)特征;通過精確控制多細(xì)胞生長環(huán)境參數(shù)、組織機(jī)械力,從而實(shí)現(xiàn)體內(nèi)器官的復(fù)雜生理功能的高度模擬。

其優(yōu)點(diǎn)眾多,例如能耗低、體積小、反應(yīng)速度快、即用即棄等。

作為高通量生物研究平臺(tái),器官芯片在生命科學(xué)研究、疾病模擬、毒性預(yù)測、新藥研發(fā)及精準(zhǔn)醫(yī)療等方面具有廣闊的發(fā)展前景。

2016年,器官芯片入選了達(dá)沃斯論壇年度十大新興技術(shù)之一,與目前風(fēng)頭正盛的兩大新興技術(shù)——新燃料電池和無人駕駛汽車并駕齊驅(qū)。

但是,器官芯片反應(yīng)速度快、高通量的特點(diǎn)所產(chǎn)生巨量的數(shù)據(jù),加上精確控制組織微環(huán)境所需的自動(dòng)化方案,已經(jīng)遠(yuǎn)遠(yuǎn)超出了具有生物醫(yī)學(xué)背景的研究人員在短時(shí)間內(nèi)進(jìn)行人工分析的范疇。

因此,器官芯片急需尋找一個(gè)可以輔助、甚至代替研究人員進(jìn)行分析判斷的工具,從而提升實(shí)驗(yàn)效率和準(zhǔn)確度。

隨著計(jì)算機(jī)算力的提升和大數(shù)據(jù)時(shí)代的到來,通過計(jì)算機(jī)代替人類完成一些任務(wù)不再是癡人說夢。

人工智能(Artificial Intelligence)近年來在計(jì)算機(jī)視覺、自然語言處理、語音識別等多個(gè)領(lǐng)域都得到了廣泛應(yīng)用,并成功地實(shí)現(xiàn)了商業(yè)化,是“第四次工業(yè)革命”中的關(guān)鍵技術(shù)。

深度學(xué)習(xí)(Deep Learning)作為目前人工智能領(lǐng)域中最炙手可熱的算法,建立深層人工神經(jīng)網(wǎng)絡(luò)進(jìn)行分析學(xué)習(xí),從而模擬視聽和思考等人類的活動(dòng)。

由于其強(qiáng)大的特征表示能力和數(shù)據(jù)挖掘能力,在計(jì)算機(jī)視覺、自然語言處理、語音識別領(lǐng)域都已經(jīng)得到了廣泛的應(yīng)用,使得人工智能相關(guān)技術(shù)取得了很大進(jìn)步。

因此,將深度學(xué)習(xí)技術(shù)作為探索和分析器官芯片實(shí)驗(yàn)數(shù)據(jù)的有力工具,可以有效挖掘海量數(shù)據(jù)背后所隱含的內(nèi)在規(guī)律,提升器官芯片的智能化水平,并激發(fā)其在藥物開發(fā)、疾病建模和個(gè)性化醫(yī)療方面的巨大潛力(圖1)。

ab4b9312-ae4e-11ec-aa7f-dac502259ad0.png

圖1 基于深度學(xué)習(xí)的器官芯片

研究進(jìn)展與展望

本文從四個(gè)方面介紹了這一領(lǐng)域的研究進(jìn)展。

1.微流控技術(shù)和以其為技術(shù)支撐的器官芯片裝置。與傳統(tǒng)疾病模型進(jìn)行對比后,可直觀地發(fā)現(xiàn)器官芯片的特性與優(yōu)勢。目前限制了器官芯片的發(fā)展瓶頸之一是:高通量的實(shí)驗(yàn)平臺(tái)帶來了巨量數(shù)據(jù)和人為的實(shí)驗(yàn)誤差。

2. 系統(tǒng)地講述了深度學(xué)習(xí)算法的發(fā)展歷程,并在其中穿插講解了算法原理及一些經(jīng)典的實(shí)現(xiàn)深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型。

3. 對目前各種適用于器官芯片,或已經(jīng)用于部分器官芯片分析的深度學(xué)習(xí)算法進(jìn)行了介紹、分析和總結(jié)。本文以應(yīng)用場景的不同、器官芯片設(shè)備的升級、深度學(xué)習(xí)算法的復(fù)雜度為分類依據(jù),循序漸進(jìn)地對相關(guān)應(yīng)用進(jìn)行了介紹,有助于對不同應(yīng)用之間進(jìn)行對比分析。通過目標(biāo)任務(wù)(預(yù)測、到目標(biāo)識別、到圖像分割、到跟蹤)的實(shí)現(xiàn)難度,對已有的基于深度學(xué)習(xí)的器官芯片應(yīng)用進(jìn)行分類(圖2)。

ab6694dc-ae4e-11ec-aa7f-dac502259ad0.png

圖2 交叉應(yīng)用的總結(jié)分類

4. 從細(xì)胞器的識別與監(jiān)測、微流控細(xì)胞培養(yǎng)系統(tǒng)的自動(dòng)化與智能化、藥物開發(fā)、罕見病的診斷以及多器官芯片耦合的人體芯片等不同角度,為這一新型交叉應(yīng)用的未來發(fā)展方向進(jìn)行展望。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    459

    文章

    52494

    瀏覽量

    440681
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122793

原文標(biāo)題:基于深度學(xué)習(xí)的器官芯片應(yīng)用新進(jìn)展

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    上海光機(jī)所在基于深度時(shí)空先驗(yàn)的動(dòng)態(tài)定量相位成像研究方面取得進(jìn)展

    和PSNR曲線。 近期,中國科學(xué)院上海光學(xué)精密機(jī)械研究所空天激光技術(shù)與系統(tǒng)部研究團(tuán)隊(duì)提出了一種引入深度時(shí)空先驗(yàn)(STeP)的輕量級神經(jīng)網(wǎng)絡(luò)架構(gòu),無需訓(xùn)練集即可應(yīng)用于動(dòng)態(tài)物體的定量相位成
    的頭像 發(fā)表于 04-27 06:23 ?198次閱讀
    上海光機(jī)所在基于<b class='flag-5'>深度</b>時(shí)空先驗(yàn)的動(dòng)態(tài)定量相位成像<b class='flag-5'>研究</b>方面取得<b class='flag-5'>進(jìn)展</b>

    二極管泵浦高能激光的研究進(jìn)展(1)

    高能激光廣泛應(yīng)用于材料加工、科學(xué)研究、空間碎片清除、軍事應(yīng)用等領(lǐng)域。二極管泵浦高能激光具有結(jié)構(gòu)緊湊,系統(tǒng)簡單、全電驅(qū)無限彈倉的特點(diǎn),近年來,各類二極管泵浦高能激光圍繞著同時(shí)實(shí)現(xiàn)高功率、高效率、高光束
    的頭像 發(fā)表于 02-18 15:46 ?516次閱讀
    二極管泵浦高能激光的<b class='flag-5'>研究進(jìn)展</b>(1)

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變
    的頭像 發(fā)表于 02-14 11:15 ?536次閱讀

    石墨烯鉛蓄電池研究進(jìn)展、優(yōu)勢、挑戰(zhàn)及未來方向

    石墨烯鉛蓄電池是將石墨烯材料與傳統(tǒng)鉛酸電池技術(shù)相結(jié)合的研究方向,旨在提升鉛酸電池的性能(如能量密度、循環(huán)壽命、快充能力等)。以下是該領(lǐng)域的研究進(jìn)展、優(yōu)勢、挑戰(zhàn)及未來方向: 一、石墨烯在鉛蓄電池
    的頭像 發(fā)表于 02-13 09:36 ?1140次閱讀

    中山大學(xué):在柔性觸覺傳感電子皮膚研究進(jìn)展

    研究內(nèi)容】 ? ? 中山大學(xué)衣芳教授團(tuán)隊(duì)在" 科學(xué)通報(bào)"期刊上發(fā)表了題為“ 柔性觸覺傳感電子皮膚研究進(jìn)展”的最新論文。本文主要綜述了近年來柔性觸覺傳感電子皮膚的研究進(jìn)展, 重點(diǎn)歸納總結(jié)了上述三類
    的頭像 發(fā)表于 02-12 17:03 ?1039次閱讀
    中山大學(xué):在柔性觸覺傳感電子皮膚<b class='flag-5'>研究進(jìn)展</b>

    高能點(diǎn)焊電源技術(shù)在現(xiàn)代工業(yè)制造中的應(yīng)用與研究進(jìn)展

    制造中的最新研究進(jìn)展。 一、高能點(diǎn)焊電源技術(shù)的基本原理及特點(diǎn) 高能點(diǎn)焊電源技術(shù)是一種利用高壓脈沖電流實(shí)現(xiàn)金屬材料瞬間熔化并完成焊接的先進(jìn)工藝。其工作原理主要基于
    的頭像 發(fā)表于 11-23 08:58 ?541次閱讀
    高能點(diǎn)焊電源技術(shù)在現(xiàn)代工業(yè)制造中的應(yīng)用與<b class='flag-5'>研究進(jìn)展</b>

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計(jì)算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?1214次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1905次閱讀

    上海光機(jī)所在多路超短脈沖時(shí)空同步測量方面取得研究進(jìn)展

    圖1.超短脈沖時(shí)空同步實(shí)驗(yàn)的光路圖 近日,中科院上海光機(jī)所高功率激光物理聯(lián)合實(shí)驗(yàn)室在多路超短脈沖時(shí)間同步與空間疊合度測量方面取得研究進(jìn)展,相關(guān)研究成果以“High-precision
    的頭像 發(fā)表于 11-11 06:25 ?513次閱讀
    上海光機(jī)所在多路超短脈沖時(shí)空同步測量方面取得<b class='flag-5'>研究進(jìn)展</b>

    一種基于深度學(xué)習(xí)的二維拉曼光譜算法

    近日,天津大學(xué)精密儀器與光電子工程學(xué)院的光子芯片實(shí)驗(yàn)室提出了一種基于深度學(xué)習(xí)的二維拉曼光譜算法,成果以“Rapid and accurate bacteria identificati
    的頭像 發(fā)表于 11-07 09:08 ?734次閱讀
    一種基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的二維拉曼光譜<b class='flag-5'>算法</b>

    GPU深度學(xué)習(xí)應(yīng)用案例

    能力,可以顯著提高圖像識別模型的訓(xùn)練速度和準(zhǔn)確性。例如,在人臉識別、自動(dòng)駕駛等領(lǐng)域,GPU被廣泛應(yīng)用于加速深度學(xué)習(xí)模型的訓(xùn)練和推理過程。 二、自然語言處理 自然語言處理(NLP)是深度
    的頭像 發(fā)表于 10-27 11:13 ?1353次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過程,實(shí)現(xiàn)對復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法為AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?2879次閱讀

    AI大模型的最新研究進(jìn)展

    AI大模型的最新研究進(jìn)展體現(xiàn)在多個(gè)方面,以下是對其最新進(jìn)展的介紹: 一、技術(shù)創(chuàng)新與突破 生成式AI技術(shù)的爆發(fā) : 生成式AI技術(shù)正在迅速發(fā)展,其強(qiáng)大的生成能力使得AI大模型在多個(gè)領(lǐng)域得到廣泛應(yīng)用
    的頭像 發(fā)表于 10-23 15:19 ?1505次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的應(yīng)用場景。 ? 可重構(gòu)性:在深度學(xué)習(xí)高速迭代的情況下,F(xiàn)PGA 比一些專用芯片(如 ASIC)具有更強(qiáng)的靈活性。當(dāng)深度學(xué)習(xí)
    發(fā)表于 09-27 20:53

    深度識別算法包括哪些內(nèi)容

    :CNN是深度學(xué)習(xí)中處理圖像和視頻等具有網(wǎng)格結(jié)構(gòu)數(shù)據(jù)的主要算法。它通過卷積層、池化層和全連接層等組件,實(shí)現(xiàn)對圖像特征的自動(dòng)提取和識別。 應(yīng)用領(lǐng)域 :CNN在圖像識別、目標(biāo)檢測、視頻分析、人臉識別等領(lǐng)域取得了巨大成功,被廣泛
    的頭像 發(fā)表于 09-10 15:28 ?834次閱讀