99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

STM32Cube.AI庫(kù)的高級(jí)特性

STM32單片機(jī) ? 來(lái)源:意法半導(dǎo)體中國(guó) ? 作者:意法半導(dǎo)體中國(guó) ? 2021-11-16 16:59 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

STM32Cube.AI意法半導(dǎo)體AI生態(tài)系統(tǒng)的一部分,是STM32Cube的一個(gè)擴(kuò)展包,它可以自動(dòng)轉(zhuǎn)換和優(yōu)化預(yù)先訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型并將生成的優(yōu)化庫(kù)集成到用戶項(xiàng)目中,從而擴(kuò)展了STM32CubeMX的功能。它還提供幾種在桌面PC和STM32上驗(yàn)證神經(jīng)網(wǎng)絡(luò)模型以及測(cè)量模型性能的方法,而無(wú)需用戶手工編寫(xiě)專門(mén)的C語(yǔ)言代碼。

上一篇文章大致介紹了STMCube.AI的基本特性,以及其工作流程。

本文將更深入地介紹它的一些高級(jí)特性。將涉及以下主題:

運(yùn)行時(shí)環(huán)境支持:Cube.AI vs TensorFlow Lite

量化支持

圖形流與存儲(chǔ)布局優(yōu)化

可重定位的二進(jìn)制模型支持

運(yùn)行時(shí)環(huán)境支持:Cube.AI vs TensorFlow Lite

STM32Cube.AI支持兩種針對(duì)不同應(yīng)用需求的運(yùn)行時(shí)環(huán)境:Cube.AI和TensorFlow Lite。作為默認(rèn)的運(yùn)行時(shí)環(huán)境,Cube.AI是專為STM32高度優(yōu)化的機(jī)器學(xué)習(xí)庫(kù)。而TensorFlow Lite for Microcontroller是由谷歌設(shè)計(jì),用于在各種微控制器或其他只有幾KB存儲(chǔ)空間的設(shè)備上運(yùn)行機(jī)器學(xué)習(xí)模型的。其被廣泛應(yīng)用于基于MCU的應(yīng)用場(chǎng)景。STM32Cube.AI集成了一個(gè)特定的流程,可以生成一個(gè)即時(shí)可用的STM32 IDE項(xiàng)目,該項(xiàng)目?jī)?nèi)嵌TensorFlow Lite for Microcontrollers運(yùn)行時(shí)環(huán)境(TFLm)以及相關(guān)的TFLite模型。這可以被看作是Cube.AI運(yùn)行時(shí)環(huán)境的一個(gè)替代方案,讓那些希望擁有一個(gè)跨多個(gè)項(xiàng)目的通用框架的開(kāi)發(fā)人員也有了選擇。

雖然這兩種運(yùn)行時(shí)環(huán)境都是為資源有限的MCU而設(shè)計(jì),但Cube.AI在此基礎(chǔ)上針對(duì)STM32的獨(dú)特架構(gòu)進(jìn)行了進(jìn)一步優(yōu)化。因此,TensorFlow Lite更適合有跨平臺(tái)可移植性需求的應(yīng)用,而Cube.AI則更適合對(duì)計(jì)算速度和內(nèi)存消耗有更高要求的應(yīng)用。

下表展示了兩個(gè)運(yùn)行時(shí)環(huán)境之間的性能比較(基于一個(gè)預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)參考模型)。評(píng)價(jià)指標(biāo)是在STM32上的推斷時(shí)間和內(nèi)存消耗。

8f1e0a68-46ab-11ec-b939-dac502259ad0.png

如表中所示,對(duì)于同一模型,Cube.AI運(yùn)行時(shí)環(huán)境比TFLite運(yùn)行時(shí)環(huán)境節(jié)約了大概20%的flash存儲(chǔ)和約8%的RAM存儲(chǔ)。此外,它的運(yùn)行速度幾乎比TFLite運(yùn)行時(shí)環(huán)境快了2倍。

對(duì)于TFLite模型,用戶可以在STM32Cube.AI的網(wǎng)絡(luò)配置菜單中對(duì)2個(gè)運(yùn)行時(shí)環(huán)境進(jìn)行選擇。

量化支持

量化是一種被廣泛使用的優(yōu)化技術(shù),它將32位浮點(diǎn)模型壓縮為位數(shù)更少的整數(shù)模型,在精度只略微下降的情況下,減少了存儲(chǔ)大小和運(yùn)行時(shí)的內(nèi)存峰值占用,也減少了CPU/MCU的推斷時(shí)間和功耗。量化模型對(duì)整數(shù)張量而不是浮點(diǎn)張量執(zhí)行部分或全部操作。它是面向拓?fù)洹⑻卣饔成淇s減、剪枝、權(quán)重壓縮等各種優(yōu)化技術(shù)的重要組成部分,可應(yīng)用在像MCU一樣資源受限的運(yùn)行時(shí)環(huán)境。

通常有兩種典型的量化方法:訓(xùn)練后量化(PTQ)和量化訓(xùn)練(QAT)。PTQ相對(duì)容易實(shí)現(xiàn),它可以用有限的具有代表性的數(shù)據(jù)集來(lái)量化預(yù)先訓(xùn)練好的模型。而QAT是在訓(xùn)練過(guò)程中完成的,通常具有更高的準(zhǔn)確度。

STM32Cube.AI通過(guò)兩種不同的方式直接或間接地支持這兩種量化方法:

首先,它可以用來(lái)部署一個(gè)由PTQ或QAT過(guò)程生成的TensorFlow Lite量化模型。在這種情況下,量化是由TensorFlow Lite框架完成的,主要是通過(guò)“TFLite converter” utility導(dǎo)出TensorFlow Lite文件。

其次,其命令行接口(CLI)還集成了一個(gè)內(nèi)部的訓(xùn)練后量化(PTQ)的過(guò)程,支持使用不同的量化方案對(duì)預(yù)訓(xùn)練好的Keras模型進(jìn)行量化。與使用TFLite Converter工具相比,該內(nèi)部量化過(guò)程提供了更多的量化方案,并在執(zhí)行時(shí)間和精確度方面有更好的表現(xiàn)。

下表顯示了在STM32上部署量化模型(與原有浮點(diǎn)模型相比)的好處。此表使用FD-MobileNet作為基準(zhǔn)模型,共有12層,參數(shù)大小145k,MACC操作數(shù)24M,輸入尺寸為224x224x3。

8fa21bfa-46ab-11ec-b939-dac502259ad0.png

從表中很容易看出,量化模型節(jié)省了約4倍的flash存儲(chǔ)和RAM存儲(chǔ),且運(yùn)行速度提高了約3倍,而精確度僅僅下降了0.7%。

如果已經(jīng)安裝了X-Cube-AI包,用戶可以通過(guò)以下路徑找到關(guān)于如何使用命令行界面(CLI)進(jìn)行量化的教程

C:UsersusernameSTM32CubeRepositoryPacksSTMicroelectronicsX-CUBE-AI7.0.0Documentationquantization.html。

在文檔的末尾還附上了一個(gè)快速實(shí)踐示例:“量化一個(gè)MNIST模型”。

圖形流與存儲(chǔ)布局優(yōu)化

除了量化技術(shù),STM32Cube.AI還通過(guò)使用其C代碼生成器的優(yōu)化引擎,針對(duì)推理時(shí)間優(yōu)化內(nèi)存使用(RAM & ROM)。該引擎基于無(wú)數(shù)據(jù)集的方法,無(wú)需驗(yàn)證或測(cè)試數(shù)據(jù)集來(lái)應(yīng)用壓縮和優(yōu)化算法。

第一種方法:權(quán)重/偏置項(xiàng)壓縮,采用k -均值聚類算法。該壓縮算法僅適用于全連接層。其優(yōu)勢(shì)是壓縮速度快,但是結(jié)果并不是無(wú)損的,最終的精度可能會(huì)受到影響。STM32Cube.AI提供“驗(yàn)證”功能,用于對(duì)所生成的C模型中產(chǎn)生的誤差進(jìn)行評(píng)估。

“壓縮”選項(xiàng)可以在STM32Cube.AI的網(wǎng)絡(luò)配置中激活,如下圖所示:

第二種方法:操作融合,通過(guò)合并層來(lái)優(yōu)化數(shù)據(jù)布局和相關(guān)的計(jì)算核。轉(zhuǎn)換或優(yōu)化過(guò)程中會(huì)刪除一些層(如“Dropout”、“Reshape”),而有些層(如非線性層以及卷積層之后的池化層)會(huì)被融合到前一層中。其好處是轉(zhuǎn)換后的網(wǎng)絡(luò)通常比原始網(wǎng)絡(luò)層數(shù)少,降低了存儲(chǔ)器中的數(shù)據(jù)吞吐需求。

最后一種方法是優(yōu)化的激活項(xiàng)存儲(chǔ)。其在內(nèi)存中定義一個(gè)讀寫(xiě)塊來(lái)存儲(chǔ)臨時(shí)的隱藏層值(激活函數(shù)的輸出)。此讀寫(xiě)塊可以被視為推理函數(shù)使用的暫存緩沖區(qū),在不同層之間被重復(fù)使用。因此,激活緩沖區(qū)的大小由幾個(gè)連續(xù)層的最大存儲(chǔ)需求決定。比如,假設(shè)有一個(gè)3層的神經(jīng)網(wǎng)絡(luò),每一層的激活值分別有5KB, 12KB和3KB,那么優(yōu)化后的激活緩沖區(qū)大小將是12KB,而不是20KB。

可重定位的二進(jìn)制模型支持

非可重定位方法(或“靜態(tài)”方法)指的是:生成的神經(jīng)網(wǎng)絡(luò)C文件被編譯并與最終用戶應(yīng)用程序堆棧靜態(tài)鏈接在一起。

如下圖所示,所有對(duì)象(包括神經(jīng)網(wǎng)絡(luò)部分和用戶應(yīng)用程序)根據(jù)不同的數(shù)據(jù)類型被一起鏈接到不同的部分。在這種情況下,當(dāng)用戶想要對(duì)功能進(jìn)行部分更新時(shí)(比如只更新神經(jīng)網(wǎng)絡(luò)部分),將需要對(duì)整個(gè)固件進(jìn)行更新。

相反,可重定位二進(jìn)制模型指定一個(gè)二進(jìn)制對(duì)象,該對(duì)象可以安裝和執(zhí)行在STM32內(nèi)存子系統(tǒng)的任何位置。它是所生成的神經(jīng)網(wǎng)絡(luò)C文件的編譯后的版本,包括前向核函數(shù)以及權(quán)重。其主要目的是提供一種靈活的方法來(lái)更新AI相關(guān)的應(yīng)用程序,而無(wú)需重新生成和刷寫(xiě)整個(gè)終端用戶固件。

生成的二進(jìn)制對(duì)象是一個(gè)輕量級(jí)插件。它可以從任何地址(位置無(wú)關(guān)的代碼)運(yùn)行,其數(shù)據(jù)也可放置于內(nèi)存中的任何地方(位置無(wú)關(guān)的數(shù)據(jù))。

STM32Cube.AI簡(jiǎn)單而高效的AI可重定位運(yùn)行時(shí)環(huán)境可以將其實(shí)例化并使用它。STM32固件中沒(méi)有內(nèi)嵌復(fù)雜的資源消耗型動(dòng)態(tài)鏈接器,其生成的對(duì)象是一個(gè)獨(dú)立的實(shí)體,運(yùn)行時(shí)不需要任何外部變量或函數(shù)。

下圖的左側(cè)部分是神經(jīng)網(wǎng)絡(luò)的可重定位二進(jìn)制對(duì)象,它是一個(gè)自給自足的獨(dú)立實(shí)體,鏈接時(shí)將被放置于終端用戶應(yīng)用程序的一個(gè)單獨(dú)區(qū)域中(右側(cè)部分)。它可以通過(guò)STM32Cube.AI的可重定位運(yùn)行時(shí)環(huán)境被實(shí)例化以及動(dòng)態(tài)鏈接。因此,用戶在更新AI模型時(shí)只需要更新這部分二進(jìn)制文件。另外,如果有進(jìn)一步的靈活性需求,神經(jīng)網(wǎng)絡(luò)的權(quán)重也可以選擇性地被生成為獨(dú)立的目標(biāo)文件。

可重定位網(wǎng)絡(luò)可以在STM32Cube.AI的高級(jí)設(shè)置中激活

最后,作為意法半導(dǎo)體人工智能生態(tài)系統(tǒng)的核心工具,STM32Cube.AI提供許多基本和高級(jí)功能,以幫助用戶輕松創(chuàng)建高度優(yōu)化和靈活的人工智能應(yīng)用。如需詳細(xì)了解特定解決方案或技術(shù)細(xì)節(jié),請(qǐng)隨時(shí)關(guān)注我們的后續(xù)文章。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • STM32
    +關(guān)注

    關(guān)注

    2293

    文章

    11032

    瀏覽量

    364787
  • 意法半導(dǎo)體
    +關(guān)注

    關(guān)注

    31

    文章

    3257

    瀏覽量

    109986
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35109

    瀏覽量

    279603

原文標(biāo)題:AI技術(shù)專題之五 |專為STM32 MCU優(yōu)化的STM32Cube.AI庫(kù)

文章出處:【微信號(hào):STM32_STM8_MCU,微信公眾號(hào):STM32單片機(jī)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    STM32F4標(biāo)準(zhǔn)外設(shè)庫(kù)資料

    stm32f4xx.h,標(biāo)準(zhǔn)外設(shè)庫(kù)
    發(fā)表于 06-08 09:49 ?0次下載

    請(qǐng)問(wèn)X—CUBEAI和touchgfx沒(méi)法同時(shí)使用嗎?

    啟用了touchgfx,X—CUBE-AI的device application就無(wú)法選擇了?這倆工具沒(méi)法同時(shí)使用嗎?小白求問(wèn)佬們
    發(fā)表于 06-06 07:16

    啟用了touchgfx,X—CUBE-AI的device application就無(wú)法選擇了?

    啟用了touchgfx,X—CUBE-AI的device application就無(wú)法選擇了?這倆工具沒(méi)法同時(shí)使用嗎?小白求問(wèn)佬們
    發(fā)表于 04-25 06:06

    意法半導(dǎo)體邊緣AI套件中提供的全部工具

    開(kāi)發(fā)工具 ? STM32Cube.AI ? ? 功能 ?:將主流AI框架(如TensorFlow Lite、ONNX等)訓(xùn)練的模型轉(zhuǎn)換為STM32微控制器優(yōu)化的代碼,支持模型壓縮與量化,自動(dòng)評(píng)估內(nèi)存占用
    的頭像 發(fā)表于 04-21 17:46 ?683次閱讀

    STM32Cube學(xué)習(xí)筆記 (十六篇全)

    資料介紹: STM32Cube學(xué)習(xí)筆記,一步一步手把手帶你進(jìn)入STM32Cube的世界,包括點(diǎn)燈,按鍵,串口,ADC,DAC等等一共16篇。 純分享貼,有需要可以直接下載附件獲取完整資料! (如果內(nèi)容有幫助可以關(guān)注、點(diǎn)贊、評(píng)論支持一下哦~)
    發(fā)表于 03-22 17:02

    ST EDGE AI云服務(wù)最后一步無(wú)法下載工程是怎么回事?

    ST EDGE AI云服務(wù)我選擇使用ST提供的模型,使用cube ai 9.0.0,選擇STM32板卡。之后就按照文檔一步一步操作,基準(zhǔn)測(cè)試也能運(yùn)行的到結(jié)果(說(shuō)明云端是生成工程并編譯下
    發(fā)表于 03-13 08:17

    STM32Cube配置RTOS時(shí)定時(shí)器如何選擇?

    STM32Cube配置RTOS時(shí)定時(shí)器如何選擇
    發(fā)表于 03-07 08:47

    如何在STM32CubeMX中集成Flexible Safety RTOS

    使用STM32處理器的用戶,可以通過(guò)STM32Cube工具生成基礎(chǔ)工程,免費(fèi)評(píng)估功能安全操作系統(tǒng)Flexible Safety RTOS二進(jìn)制庫(kù)了。
    的頭像 發(fā)表于 01-17 11:31 ?1726次閱讀
    如何在<b class='flag-5'>STM32</b>CubeMX中集成Flexible Safety RTOS

    如何在STM32f4系列開(kāi)發(fā)板上部署STM32Cube.AI,

    已下載STM32Cube.AI擴(kuò)展包,但是無(wú)法使用,感覺(jué)像是沒(méi)有部署AI模型,我是想要通過(guò)攝像頭拍照,上傳圖像后,經(jīng)過(guò)開(kāi)發(fā)板處理器進(jìn)行AI模型處理識(shí)別過(guò)后,告訴我識(shí)別結(jié)果,顯示在TFLCD屏幕上
    發(fā)表于 11-18 09:39

    Wilink8高級(jí)特性

    電子發(fā)燒友網(wǎng)站提供《Wilink8高級(jí)特性.pdf》資料免費(fèi)下載
    發(fā)表于 11-08 15:58 ?0次下載
    Wilink8<b class='flag-5'>高級(jí)</b><b class='flag-5'>特性</b>

    X-CUBE-CLASSB以及生態(tài)系統(tǒng)為何如此重要

    ???????? X-CUBE-STL目前支持STM32MP1、STM32U5、STM32L5、STM32H5和
    的頭像 發(fā)表于 11-07 14:01 ?810次閱讀

    RISC-V如何支持不同的AI和機(jī)器學(xué)習(xí)框架和庫(kù)?

    RISC-V如何支持不同的AI和機(jī)器學(xué)習(xí)框架和庫(kù)?還請(qǐng)壇友們多多指教一下。
    發(fā)表于 10-10 22:24

    如何在STM32上運(yùn)行AI應(yīng)用

    1.X-Linux-AI概述X-LINUX-AISTM32MPUOpenSTLinux擴(kuò)展包,面向STM32MP1和STM32MP2系列微
    的頭像 發(fā)表于 09-30 08:00 ?3357次閱讀
    如何在<b class='flag-5'>STM32</b>上運(yùn)行<b class='flag-5'>AI</b>應(yīng)用

    下一代高功能新一代AI加速器(DRP-AI3):10x在高級(jí)AI系統(tǒng)高級(jí)AI中更快的嵌入處理

    電子發(fā)燒友網(wǎng)站提供《下一代高功能新一代AI加速器(DRP-AI3):10x在高級(jí)AI系統(tǒng)高級(jí)AI
    發(fā)表于 08-15 11:06 ?0次下載
    下一代高功能新一代<b class='flag-5'>AI</b>加速器(DRP-<b class='flag-5'>AI</b>3):10x在<b class='flag-5'>高級(jí)</b><b class='flag-5'>AI</b>系統(tǒng)<b class='flag-5'>高級(jí)</b><b class='flag-5'>AI</b>中更快的嵌入處理

    使用STM32CubeIDE建的MP257F工程會(huì)出現(xiàn)大量缺庫(kù)現(xiàn)象,為什么?

    STM32Cube_FW_MP2_V1.0.0固件庫(kù)中將缺少的庫(kù)文件補(bǔ)充進(jìn)去,并在工程的 Properties -&gt; Paths and Symbols -&gt; Includes
    發(fā)表于 07-24 07:23