99精品伊人亚洲|最近国产中文炮友|九草在线视频支援|AV网站大全最新|美女黄片免费观看|国产精品资源视频|精彩无码视频一区|91大神在线后入|伊人终合在线播放|久草综合久久中文

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

物體抓取領(lǐng)域的機(jī)器視覺(jué)

新機(jī)器視覺(jué) ? 來(lái)源:知乎 ? 作者:知乎 ? 2021-06-18 11:44 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器視覺(jué)的角度,由簡(jiǎn)入繁從相機(jī)標(biāo)定,平面物體檢測(cè)、有紋理物體、無(wú)紋理物體、深度學(xué)習(xí)、與任務(wù)/運(yùn)動(dòng)規(guī)劃結(jié)合等6個(gè)方面深度解析文章的標(biāo)題。

首先,我們要了解,機(jī)器人領(lǐng)域的視覺(jué)(Machine Vision)跟計(jì)算機(jī)領(lǐng)域(Computer Vision)的視覺(jué)有一些不同:機(jī)器視覺(jué)的目的是給機(jī)器人提供操作物體的信息。所以,機(jī)器視覺(jué)的研究大概有這幾塊:

1. 物體識(shí)別(Object Recognition):在圖像中檢測(cè)到物體類(lèi)型等,這跟 CV 的研究有很大一部分交叉;

2. 位姿估計(jì)(Pose Estimation):計(jì)算出物體在攝像機(jī)坐標(biāo)系下的位置和姿態(tài),對(duì)于機(jī)器人而言,需要抓取東西,不僅要知道這是什么,也需要知道它具體在哪里;

3. 相機(jī)標(biāo)定(Camera Calibration):因?yàn)樯厦孀龅闹皇怯?jì)算了物體在相機(jī)坐標(biāo)系下的坐標(biāo),我們還需要確定相機(jī)跟機(jī)器人的相對(duì)位置和姿態(tài),這樣才可以將物體位姿轉(zhuǎn)換到機(jī)器人位姿。

當(dāng)然,我這里主要是在物體抓取領(lǐng)域的機(jī)器視覺(jué);SLAM 等其他領(lǐng)域的就先不講了。

由于視覺(jué)是機(jī)器人感知的一塊很重要內(nèi)容,所以研究也非常多了,我就我了解的一些,按照由簡(jiǎn)入繁的順序介紹吧。

一。 相機(jī)標(biāo)定

這其實(shí)屬于比較成熟的領(lǐng)域。由于我們所有物體識(shí)別都只是計(jì)算物體在相機(jī)坐標(biāo)系下的位姿,但是,機(jī)器人操作物體需要知道物體在機(jī)器人坐標(biāo)系下的位姿。所以,我們先需要對(duì)相機(jī)的位姿進(jìn)行標(biāo)定。

內(nèi)參標(biāo)定就不說(shuō)了,參照張正友的論文,或者各種標(biāo)定工具箱;

外參標(biāo)定的話,根據(jù)相機(jī)安裝位置,有兩種方式:

Eye to Hand:相機(jī)與機(jī)器人極坐標(biāo)系固連,不隨機(jī)械臂運(yùn)動(dòng)而運(yùn)動(dòng)

Eye in Hand:相機(jī)固連在機(jī)械臂上,隨機(jī)械臂運(yùn)動(dòng)而運(yùn)動(dòng)

兩種方式的求解思路都類(lèi)似,首先是眼在手外(Eye to Hand)

279ce6d4-cf69-11eb-9e57-12bb97331649.jpg

只需在機(jī)械臂末端固定一個(gè)棋盤(pán)格,在相機(jī)視野內(nèi)運(yùn)動(dòng)幾個(gè)姿態(tài)。由于相機(jī)可以計(jì)算出棋盤(pán)格相對(duì)于相機(jī)坐標(biāo)系的位姿A_i 、機(jī)器人運(yùn)動(dòng)學(xué)正解可以計(jì)算出機(jī)器人底座到末端抓手之間的位姿變化E_i 、而末端爪手與棋盤(pán)格的位姿相對(duì)固定不變。

這樣,我們就可以得到一個(gè)坐標(biāo)系環(huán) CX=XD

這種結(jié)構(gòu)的求解有很多方法,我這邊給出一個(gè)參考文獻(xiàn):

Shiu, Yiu Cheung, and Shaheen Ahmad. “Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX= XB.”ieee Transactions on Robotics and Automation 5.1 (1989): 16-29.

而對(duì)于眼在手上(Eye in Hand)的情況,也類(lèi)似,在地上隨便放一個(gè)棋盤(pán)格(與機(jī)器人基座固連),然后讓機(jī)械臂帶著相機(jī)走幾個(gè)位姿,然后也可以形成一個(gè)AX=XB 的坐標(biāo)環(huán)。

27bcf64a-cf69-11eb-9e57-12bb97331649.jpg

二. 平面物體檢測(cè)

這是目前工業(yè)流水線上最常見(jiàn)的場(chǎng)景。目前來(lái)看,這一領(lǐng)域?qū)σ曈X(jué)的要求是:快速、精確、穩(wěn)定。所以,一般是采用最簡(jiǎn)單的邊緣提取+邊緣匹配/形狀匹配的方法;而且,為了提高穩(wěn)定性、一般會(huì)通過(guò)主要打光源、采用反差大的背景等手段,減少系統(tǒng)變量。

目前,很多智能相機(jī)(如 cognex)都直接內(nèi)嵌了這些功能;而且,物體一般都是放置在一個(gè)平面上,相機(jī)只需計(jì)算物體的(x,y,θ)T 三自由度位姿即可。

另外,這種應(yīng)用場(chǎng)景一般都是用于處理一種特定工件,相當(dāng)于只有位姿估計(jì),而沒(méi)有物體識(shí)別。

當(dāng)然,工業(yè)上追求穩(wěn)定性無(wú)可厚非,但是隨著生產(chǎn)自動(dòng)化的要求越來(lái)越高,以及服務(wù)類(lèi)機(jī)器人的興起。對(duì)更復(fù)雜物體的完整位姿(x,y,z,rx,ry,rz)T 估計(jì)也就成了機(jī)器視覺(jué)的研究熱點(diǎn)。

三.有紋理的物體

機(jī)器人視覺(jué)領(lǐng)域是最早開(kāi)始研究有紋理的物體的,如飲料瓶、零食盒等表面帶有豐富紋理的都屬于這一類(lèi)。

當(dāng)然,這些物體也還是可以用類(lèi)似邊緣提取+模板匹配的方法。但是,實(shí)際機(jī)器人操作過(guò)程中,環(huán)境會(huì)更加復(fù)雜:光照條件不確定(光照)、物體距離相機(jī)距離不確定(尺度)、相機(jī)看物體的角度不確定(旋轉(zhuǎn)、仿射)、甚至是被其他物體遮擋(遮擋)。

幸好有一位叫做 Lowe 的大神,提出了一個(gè)叫做 SIFT (Scale-invariant feature transform)的超強(qiáng)局部特征點(diǎn):

Lowe, David G. “Distinctive image features from scale-invariant keypoints.”International journal of computer vision 60.2 (2004): 91-110.

具體原理可以看上面這篇被引用 4萬(wàn)+ 的論文或各種博客,簡(jiǎn)單地說(shuō),這個(gè)方法提取的特征點(diǎn)只跟物體表面的某部分紋理有關(guān),與光照變化、尺度變化、仿射變換、整個(gè)物體無(wú)關(guān)。

因此,利用 SIFT 特征點(diǎn),可以直接在相機(jī)圖像中尋找到與數(shù)據(jù)庫(kù)中相同的特征點(diǎn),這樣,就可以確定相機(jī)中的物體是什么東西(物體識(shí)別)。

對(duì)于不會(huì)變形的物體,特征點(diǎn)在物體坐標(biāo)系下的位置是固定的。所以,我們?cè)讷@取若干點(diǎn)對(duì)之后,就可以直接求解出相機(jī)中物體與數(shù)據(jù)庫(kù)中物體之間的單應(yīng)性矩陣。

如果我們用深度相機(jī)(如Kinect)或者雙目視覺(jué)方法,確定出每個(gè)特征點(diǎn)的 3D 位置。那么,直接求解這個(gè) PnP 問(wèn)題,就可以計(jì)算出物體在當(dāng)前相機(jī)坐標(biāo)系下的位姿。

↑ 這里就放一個(gè)實(shí)驗(yàn)室之前畢業(yè)師兄的成果

當(dāng)然,實(shí)際操作過(guò)程中還是有很多細(xì)節(jié)工作才可以讓它真正可用的,如:先利用點(diǎn)云分割和歐氏距離去除背景的影響、選用特征比較穩(wěn)定的物體(有時(shí)候 SIFT 也會(huì)變化)、利用貝葉斯方法加速匹配等。

而且,除了 SIFT 之外,后來(lái)又出了一大堆類(lèi)似的特征點(diǎn),如 SURF、ORB 等。

四. 無(wú)紋理的物體

好了,有問(wèn)題的物體容易解決,那么生活中或者工業(yè)里還有很多物體是沒(méi)有紋理的:

我們最容易想到的就是:是否有一種特征點(diǎn),可以描述物體形狀,同時(shí)具有跟 SIFT 相似的不變性?

不幸的是,據(jù)我了解,目前沒(méi)有這種特征點(diǎn)。

所以,之前一大類(lèi)方法還是采用基于模板匹配的辦法,但是,對(duì)匹配的特征進(jìn)行了專(zhuān)門(mén)選擇(不只是邊緣等簡(jiǎn)單特征)。

這里,我介紹一個(gè)我們實(shí)驗(yàn)室之前使用和重現(xiàn)過(guò)的算法 LineMod:

Hinterstoisser, Stefan, et al. “Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes.” Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011.

簡(jiǎn)單而言,這篇論文同時(shí)利用了彩色圖像的圖像梯度和深度圖像的表面法向作為特征,與數(shù)據(jù)庫(kù)中的模板進(jìn)行匹配。

由于數(shù)據(jù)庫(kù)中的模板是從一個(gè)物體的多個(gè)視角拍攝后生成的,所以這樣匹配得到的物體位姿只能算是初步估計(jì),并不精確。

但是,只要有了這個(gè)初步估計(jì)的物體位姿,我們就可以直接采用 ICP 算法(Iterative closest point)匹配物體模型與 3D 點(diǎn)云,從而得到物體在相機(jī)坐標(biāo)系下的精確位姿。

當(dāng)然,這個(gè)算法在具體實(shí)施過(guò)程中還是有很多細(xì)節(jié)的:如何建立模板、顏色梯度的表示等。另外,這種方法無(wú)法應(yīng)對(duì)物體被遮擋的情況。(當(dāng)然,通過(guò)降低匹配閾值,可以應(yīng)對(duì)部分遮擋,但是會(huì)造成誤識(shí)別)。

針對(duì)部分遮擋的情況,我們實(shí)驗(yàn)室的張博士去年對(duì) LineMod 進(jìn)行了改進(jìn),但由于論文尚未發(fā)表,所以就先不過(guò)多涉及了。

五.深度學(xué)習(xí)

由于深度學(xué)習(xí)在計(jì)算機(jī)視覺(jué)領(lǐng)域得到了非常好的效果,我們做機(jī)器人的自然也會(huì)嘗試把 DL 用到機(jī)器人的物體識(shí)別中。

首先,對(duì)于物體識(shí)別,這個(gè)就可以照搬 DL 的研究成果了,各種 CNN 拿過(guò)來(lái)用就好了。在 2016 年的『亞馬遜抓取大賽』中,很多隊(duì)伍都采用了 DL 作為物體識(shí)別算法。

然而, 在這個(gè)比賽中,雖然很多人采用 DL 進(jìn)行物體識(shí)別,但在物體位姿估計(jì)方面都還是使用比較簡(jiǎn)單、或者傳統(tǒng)的算法。似乎并未廣泛采用 DL。如 周博磊 所說(shuō),一般是采用 semantic segmentation network 在彩色圖像上進(jìn)行物體分割,之后,將分割出的部分點(diǎn)云與物體 3D 模型進(jìn)行 ICP 匹配。

當(dāng)然,直接用神經(jīng)網(wǎng)絡(luò)做位姿估計(jì)的工作也是有的,如這篇:

Doumanoglou, Andreas, et al. “Recovering 6d object pose and predicting next-best-view in the crowd.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

它的方法大概是這樣:對(duì)于一個(gè)物體,取很多小塊 RGB-D 數(shù)據(jù)(只關(guān)心一個(gè)patch,用局部特征可以應(yīng)對(duì)遮擋);每小塊有一個(gè)坐標(biāo)(相對(duì)于物體坐標(biāo)系);然后,首先用一個(gè)自編碼器對(duì)數(shù)據(jù)進(jìn)行降維;之后,用將降維后的特征用于訓(xùn)練Hough Forest。

六。 與任務(wù)/運(yùn)動(dòng)規(guī)劃結(jié)合

這部分也是比較有意思的研究?jī)?nèi)容,由于機(jī)器視覺(jué)的目的是給機(jī)器人操作物體提供信息,所以,并不限于相機(jī)中的物體識(shí)別與定位,往往需要跟機(jī)器人的其他模塊相結(jié)合。

我們讓機(jī)器人從冰箱中拿一瓶『雪碧』,但是這個(gè) 『雪碧』 被『美年達(dá)』擋住了。

我們?nèi)祟?lèi)的做法是這樣的:先把 『美年達(dá)』 移開(kāi),再去取 『雪碧』 。

所以,對(duì)于機(jī)器人來(lái)說(shuō),它需要先通過(guò)視覺(jué)確定雪碧在『美年達(dá)』后面,同時(shí),還需要確定『美年達(dá)』這個(gè)東西是可以移開(kāi)的,而不是冰箱門(mén)之類(lèi)固定不可拿開(kāi)的物體。 當(dāng)然,將視覺(jué)跟機(jī)器人結(jié)合后,會(huì)引出其他很多好玩的新東西。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器人
    +關(guān)注

    關(guān)注

    213

    文章

    29728

    瀏覽量

    212820
  • 機(jī)器視覺(jué)
    +關(guān)注

    關(guān)注

    163

    文章

    4595

    瀏覽量

    122877
  • 定位技術(shù)
    +關(guān)注

    關(guān)注

    7

    文章

    301

    瀏覽量

    25901
  • 工業(yè)機(jī)器人
    +關(guān)注

    關(guān)注

    91

    文章

    3457

    瀏覽量

    94127

原文標(biāo)題:工業(yè)機(jī)器人抓取定位技術(shù)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    EtherCAT科普系列(8):EtherCAT技術(shù)在機(jī)器視覺(jué)領(lǐng)域的應(yīng)用

    機(jī)器視覺(jué)是基于軟件與硬件的組合,通過(guò)光學(xué)裝置和非接觸式的傳感器自動(dòng)地接受一個(gè)真實(shí)物體的圖像,并利用軟件算法處理圖像以獲得所需信息或用于控制機(jī)器人運(yùn)動(dòng)的裝置。
    的頭像 發(fā)表于 05-15 17:09 ?640次閱讀
    EtherCAT科普系列(8):EtherCAT技術(shù)在<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺(jué)</b><b class='flag-5'>領(lǐng)域</b>的應(yīng)用

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    : 一、機(jī)器視覺(jué):從理論到實(shí)踐 第7章詳細(xì)介紹了ROS2在機(jī)器視覺(jué)領(lǐng)域的應(yīng)用,涵蓋了相機(jī)標(biāo)定、OpenCV集成、
    發(fā)表于 05-03 19:41

    復(fù)合機(jī)器抓取精度的影響因素及提升策略

    復(fù)合機(jī)器人結(jié)合了移動(dòng)機(jī)器人(如AGV)和機(jī)械臂的功能,廣泛應(yīng)用于物流、制造等領(lǐng)域抓取精度是其核心性能指標(biāo)之一,直接影響作業(yè)效率和產(chǎn)品質(zhì)量。本文將探討復(fù)合
    的頭像 發(fā)表于 04-12 11:15 ?334次閱讀

    破解透明物體抓取難題,地瓜機(jī)器人 CASIA 推出幾何和語(yǔ)義融合的單目抓取方案|ICRA 2025

    近日,全球機(jī)器領(lǐng)域頂會(huì)ICRA 2025(IEEE機(jī)器人與自動(dòng)化國(guó)際會(huì)議)公布論文錄用結(jié)果,地瓜機(jī)器人主導(dǎo)研發(fā)的DOSOD開(kāi)放詞匯目標(biāo)檢測(cè)算法與MODEST單目透明
    的頭像 發(fā)表于 03-05 19:30 ?560次閱讀
    破解透明<b class='flag-5'>物體</b><b class='flag-5'>抓取</b>難題,地瓜<b class='flag-5'>機(jī)器</b>人 CASIA 推出幾何和語(yǔ)義融合的單目<b class='flag-5'>抓取</b>方案|ICRA 2025

    機(jī)器視覺(jué)要面臨的挑戰(zhàn)及其解決方法

    機(jī)器視覺(jué)是指使用計(jì)算機(jī)和圖像處理技術(shù)從圖像中提取信息,并將其轉(zhuǎn)換為機(jī)器可理解的格式。這種方法已經(jīng)被廣泛應(yīng)用于自動(dòng)化生產(chǎn)、質(zhì)量控制、測(cè)量和檢測(cè)等領(lǐng)域。然而,
    的頭像 發(fā)表于 11-11 01:03 ?982次閱讀

    機(jī)器視覺(jué)與運(yùn)動(dòng)控制:科技協(xié)同下的完美搭檔

    在當(dāng)今先進(jìn)的工業(yè)制造和科技領(lǐng)域中,機(jī)器視覺(jué)與運(yùn)動(dòng)控制這兩項(xiàng)關(guān)鍵技術(shù)正發(fā)揮著日益重要的作用。它們之間的關(guān)系緊密而復(fù)雜,共同推動(dòng)著各個(gè)行業(yè)的發(fā)展與進(jìn)步。 一、機(jī)器
    的頭像 發(fā)表于 09-10 10:03 ?482次閱讀

    探索3D視覺(jué)技術(shù)在活塞桿自動(dòng)化抓取中的應(yīng)用

    隨著工業(yè)4.0時(shí)代的到來(lái),智能制造成為工業(yè)發(fā)展的重要趨勢(shì)。作為智能制造的關(guān)鍵技術(shù)之一,3D視覺(jué)技術(shù)在活塞桿抓取領(lǐng)域的應(yīng)用前景十分廣闊。
    的頭像 發(fā)表于 09-07 15:38 ?470次閱讀

    視覺(jué)檢測(cè)是什么意思?機(jī)器視覺(jué)檢測(cè)的適用行業(yè)及場(chǎng)景有哪些?

    檢測(cè)的定義與原理 機(jī)器視覺(jué)檢測(cè),是利用光學(xué)成像、數(shù)字信號(hào)處理和計(jì)算機(jī)技術(shù),模擬人類(lèi)視覺(jué)的功能,對(duì)目標(biāo)物體進(jìn)行自動(dòng)檢測(cè)和分析的技術(shù)。它包括圖像采集、預(yù)處理、特征提取、分類(lèi)識(shí)別等多個(gè)環(huán)節(jié),
    的頭像 發(fā)表于 08-30 11:20 ?882次閱讀

    基于機(jī)器視覺(jué)的鐵路轉(zhuǎn)轍機(jī)精準(zhǔn)定位與故障抓取自動(dòng)化解決方案

    隨著鐵路交通的快速發(fā)展,轉(zhuǎn)轍機(jī)作為確保列車(chē)安全、順暢運(yùn)行的關(guān)鍵設(shè)備,其維護(hù)和故障處理的重要性日益凸顯。傳統(tǒng)的轉(zhuǎn)轍機(jī)維護(hù)和故障處理方式往往依賴(lài)人工,不僅效率低下,而且存在安全風(fēng)險(xiǎn)。為了提升鐵路運(yùn)營(yíng)的效率和安全性,基于機(jī)器視覺(jué)的鐵路轉(zhuǎn)轍機(jī)精準(zhǔn)定位與故障
    的頭像 發(fā)表于 08-13 15:27 ?620次閱讀

    水星Mercury X1輪式人形機(jī)器人結(jié)合openc算法&STag標(biāo)記碼視覺(jué)系統(tǒng)實(shí)現(xiàn)精確抓取

    本案例展示了如何利用視覺(jué)系統(tǒng)提升機(jī)械臂的抓取精度,成功實(shí)現(xiàn)了人形機(jī)器人的雙臂抓取不在局限于單臂抓取。 引言 如今市面上已經(jīng)有了許多不同類(lèi)型的
    的頭像 發(fā)表于 08-12 11:02 ?1866次閱讀
    水星Mercury X1輪式人形<b class='flag-5'>機(jī)器</b>人結(jié)合openc算法&STag標(biāo)記碼<b class='flag-5'>視覺(jué)</b>系統(tǒng)實(shí)現(xiàn)精確<b class='flag-5'>抓取</b>!

    什么是機(jī)器視覺(jué)opencv?它有哪些優(yōu)勢(shì)?

    Vision Library)是一個(gè)開(kāi)源的計(jì)算機(jī)視覺(jué)庫(kù),提供了大量的圖像處理和計(jì)算機(jī)視覺(jué)算法,廣泛應(yīng)用于機(jī)器視覺(jué)領(lǐng)域
    的頭像 發(fā)表于 07-16 10:33 ?1352次閱讀

    機(jī)器視覺(jué)在嵌入式中的應(yīng)用

    對(duì)物體或場(chǎng)景的識(shí)別、測(cè)量和分析的技術(shù)。隨著計(jì)算機(jī)技術(shù)、圖像處理技術(shù)和人工智能技術(shù)的快速發(fā)展,機(jī)器視覺(jué)技術(shù)在各個(gè)領(lǐng)域得到了廣泛應(yīng)用,特別是在嵌入式系統(tǒng)中,其應(yīng)用前景非常廣闊。 嵌入式系統(tǒng)
    的頭像 發(fā)表于 07-16 10:30 ?972次閱讀

    機(jī)器視覺(jué)和人工智能的關(guān)系與應(yīng)用

    機(jī)器視覺(jué)和人工智能的關(guān)系是一個(gè)廣泛而深入的話題,涉及到計(jì)算機(jī)科學(xué)、電子工程、光學(xué)、圖像處理、模式識(shí)別等多個(gè)領(lǐng)域。 一、機(jī)器視覺(jué)和人工智能的定
    的頭像 發(fā)表于 07-16 10:27 ?1660次閱讀

    機(jī)器視覺(jué)的應(yīng)用實(shí)例解析

    機(jī)器視覺(jué)是一種利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)圖像進(jìn)行處理、分析和理解的技術(shù)。它在許多領(lǐng)域都有廣泛的應(yīng)用,包括工業(yè)自動(dòng)化、醫(yī)療診斷、交通監(jiān)控、安全監(jiān)控等。 一、引言
    的頭像 發(fā)表于 07-16 10:19 ?1013次閱讀

    機(jī)器視覺(jué)的四大類(lèi)應(yīng)用是什么?

    機(jī)器視覺(jué)是一種利用計(jì)算機(jī)和圖像處理技術(shù),模擬人類(lèi)視覺(jué)系統(tǒng),實(shí)現(xiàn)對(duì)圖像的獲取、處理、分析和理解的技術(shù)。它在工業(yè)、醫(yī)療、農(nóng)業(yè)、交通等領(lǐng)域有著廣泛的應(yīng)用。以下是
    的頭像 發(fā)表于 07-16 10:17 ?2608次閱讀